Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.
Giải:
b) \(\left(2x+1\right).\left(y-3\right)=10\)
\(\Rightarrow\left(2x+1\right)\) và \(\left(y-3\right)\inƯ\left(10\right)=\left\{1;2;5;10\right\}\)
Vì \(\left(2x+1\right)\) là số lẻ nên \(\left(2x+1\right)\in\left\{1;5\right\}\)
Ta có bảng giá trị:
2x+1 | 1 | 5 |
y-3 | 5 | 1 |
x | 1 | 2 |
y | 8 | 4 |
Vậy \(\left(x;y\right)=\left\{\left(1;8\right);\left(2;4\right)\right\}\)
c) \(2xy-x+2y=13\)
\(\Rightarrow x.\left(2y-1\right)+\left(2y-1\right)=12\)
\(\Rightarrow\left(x+1\right).\left(2y-1\right)=12\)
\(\Rightarrow\left(x+1\right)\) và \(\left(2y-1\right)\inƯ\left(12\right)=\left\{1;2;3;4;6;12\right\}\)
Vì \(\left(2y-1\right)\) là số lẻ nên \(\left(2y-1\right)\in\left\{1;3\right\}\)
Ta có bảng giá trị:
x+1 | 12 | 4 |
2y-1 | 1 | 3 |
x | 11 | 3 |
y | 1 | 2 |
Vậy \(\left(x;y\right)=\left\{\left(11;1\right);\left(3;2\right)\right\}\)
Giải: (tiếp)
d) \(6xy-9x-4y+5=0\)
\(\Rightarrow3x.\left(2y-3\right)-4y=-5\)
\(\Rightarrow3x.\left(2y-3\right)-4y+6=1\)
\(\Rightarrow3x.\left(2y-3\right)-2.\left(2y-3\right)=1\)
\(\Rightarrow\left(3x-2\right).\left(2y-3\right)=1\)
\(\Rightarrow\left(3x-2\right)\) và \(\left(2y-3\right)\inƯ\left(1\right)=\left\{1\right\}\)
Ta có bảng giá trị:
3x-2 | 1 |
2y-3 | 1 |
x | 1 |
y | 2 |
Vậy \(\left(x;y\right)=\left\{\left(1;2\right)\right\}\)
e) \(2xy-6x+y=13\)
\(\Rightarrow2x.\left(y-3\right)+\left(y-3\right)=10\)
\(\Rightarrow\left(2x+1\right).\left(y-3\right)=10\)
Còn lại câu e nó giống hệt câu b nha nên câu lm giống nó là đc!
f) \(2xy-5x+2y=148\)
\(\Rightarrow2y.\left(x+1\right)-5x-5=143\)
\(\Rightarrow2y.\left(x+1\right)-5.\left(x+1\right)=143\)
\(\Rightarrow\left(x+1\right).\left(2y-5\right)=143\)
\(\Rightarrow\left(x+1\right)\) và \(\left(2y-5\right)\inƯ\left(143\right)=\left\{1;11;13;143\right\}\)
Ta có bảng giá trị:
x+1 | 1 | 11 | 13 | 143 |
2y-5 | 143 | 13 | 11 | 1 |
x | 0 | 10 | 12 | 142 |
y | 74 | 9 | 8 | 3 |
Vậy \(\left(x;y\right)=\left\{\left(0;74\right);\left(10;9\right);\left(12;8\right);\left(142;3\right)\right\}\)
Chúc bạn học tốt! (Trời mk mất gần 1 tiếng bài này! )
Sửa đề :
Tìm tất cả cặp số nguyên x, y thỏa mãn: y2+2xy−3x−2=0
Giải
Coi phương trình đã hco là phương trình bậc hai ẩn yy có tham số x.x.
Ta có: Δ=4x2+12x+8.Δ=4x2+12x+8.
Vì x, y∈Z⇒Δx, y∈Z⇒Δ phải là số chính phương.
⇒4x2+12x+8=k2⇔4x2+12x+9−k2=1⇔(2x+3)2−k2=1⇔(2x+3−k)(2x+3+k)=1⇔⎡⎢ ⎢ ⎢ ⎢⎣{2x+3−k=12x+3+k=1{2x+3−k=−12x+3+k=−1⇔⎡⎢ ⎢ ⎢ ⎢⎣{x=−1(tm)k=0{x=−2(tm)k=0.⇒4x2+12x+8=k2⇔4x2+12x+9−k2=1⇔(2x+3)2−k2=1⇔(2x+3−k)(2x+3+k)=1⇔[{2x+3−k=12x+3+k=1{2x+3−k=−12x+3+k=−1⇔[{x=−1(tm)k=0{x=−2(tm)k=0.
Với x=−1⇒(∗)⇔y2−2y+1=0⇔(y−1)2=0⇔y=1 (tm).x=−1⇒(∗)⇔y2−2y+1=0⇔(y−1)2=0⇔y=1 (tm).
Với x=−2⇒(∗)⇔y2−4y+4=0⇔(y−2)2=0⇔y=2 (tm).x=−2⇒(∗)⇔y2−4y+4=0⇔(y−2)2=0⇔y=2 (tm).
Vậy tập nghiệm của phương trình đã cho là: (x; y)={(−1; 1); (−2; 2)}.
Nó bị lỗi phông thông cảm
HT
Hình như sai đề bài rồi bạn ạ chữa lại đi mk giải cho
không sai đâu đề tui cũng giống thế mà giải đi mà bạn ơi!
a) x + y +xy = 6
y( 1 + x ) + x + 1 = 7
( x + 1 ) ( y + 1 ) = 7
x+1 | -7 | -1 | 1 | 7 |
y+1 | -1 | -7 | 7 | 1 |
x | -8 | -2 | 0 | 6 |
y | -2 | -8 | 6 | 0 |
b) 2x + y - 2xy - 8 = 0
2x ( 1 - y ) - ( 1 - y ) - 7 = 0
( 1 - y ) ( 2x - 1 ) = 7
2x - 1 | -7 | -1 | 1 | 7 |
1 - y | -1 | -7 | 7 | 1 |
x | -3 | 0 | 1 | 4 |
y | 2 | 8 | -6 | 0 |
c) x - 4y + xy - 1 = 0
x( 1 + y ) -4( 1 + y ) + 3 = 0
( 1 + y ) ( x- 4 ) = 3
x- 4 | -3 | -1 | 1 | 3 |
1 + y | -1 | -3 | 3 | 1 |
x | 1 | 3 | 5 | 7 |
y | -2 | -4 | 2 | 0 |
\(\text{Ta có:}\)
\(|a|\text{ cùng tính chẵn lẻ với a khi a là số nguyên}\)
\(\text{Mà: 3x-4y; 5x-6y đều là số nguyên nên:}|3x-4y|+|5x-6y|\text{ cùng tính chẵn lẻ với:}\)
\(\text{3x-4y+5x-6y=8x-10y chia hết cho 2 nên là số chẵn mà 7 là số lẻ nên vô lí ta có điều phải chứng minh}\)
bạn không biết làm thì làm sao biết người ta làm đúng hay sai để k
đúng rồi. nếu bn biết câu trả lời thì bạn mới k dc,còn khi bn hỏi ngta mà k thì bn lại ko biết dc.