K
Khách

Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.

a: \(x^3-2y^2=2^3-2\cdot\left(-2\right)^2=8-2\cdot4=0\)

=>\(C=x\left(x^2-y\right)\left(x^3-2y^2\right)\left(x^4-3y^3\right)\left(x^5-4y^4\right)=0\)

b: x+y+1=0

=>x+y=-1

\(D=x^2\left(x+y\right)-y^2\left(x+y\right)+\left(x^2-y^2\right)+2\left(x+y\right)+3\)

\(=x^2\cdot\left(-1\right)-y^2\left(-1\right)+\left(x^2-y^2\right)+2\cdot\left(-1\right)+3\)

\(=-x^2+y^2+x^2-y^2-2+3\)

=1

9 tháng 10 2016

a.  x=1      y= -3

b.  x=5      y=7/2

c.  x= -1    y= -1/2

d.  x=1/4   y= 1/4

16 tháng 10 2016

a) x = 1    

y = -3

b) x = 5

y = 7/2

c) x = -1

y = -1/2

d) x = 1/4 

y = 1/4

nha bn

Ta có\(\left(x+y-3\right)^2+6=\frac{12}{\left|y-1\right|+\left|y-3\right|}\left(1\right)\)

:\(\frac{12}{\left|y-1\right|+\left|y-3\right|}=\frac{12}{\left|y-1\right|+\left|3-y\right|}\le\frac{12}{\left|y-1+3-y\right|}=\frac{12}{2}=6\left(2\right)\)

\(\left(x+y-3\right)^2+6\ge6\left(3\right)\)

Từ (1),(2) và (3)

Suy ra dấu "=" xảy ra \(\Leftrightarrow\hept{\begin{cases}x+y-3=0\\\left(y-1\right)\left(3-y\right)\ge0\end{cases}}\)

\(\Rightarrow\hept{\begin{cases}1\le y\le3\\x+y=3\end{cases}}\)

Với y=1 thì x=2

Với y=2 thì x=1

Với y=3 thì x=0

Vậy....................