Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.
Xét tam giác ACI và tam giác BCI , có
CI là cạnh chung
AC = BC
AI= BI
=> tam giác ACI = tam giác BCI
Xét tam giác ACD và tam giác BCD , có
CD là cạnh chung
AD = BD
AC =BC
=> tam giác ACD = tam giác BCD
Xét tam giác ADI và tam giác BDI , có
DI là cạnh chung
AD = BD
AI = BI
=> tam giác ADI = tam giác BDI
ok 3 cặp nha thư
Có hai trường hợp:
+ ΔAIC = ΔBIC (c.g.c) vì:
AI = IB (gt)
∠AIC = ∠BIC = 90o
CI chung.
+ ΔAID = ΔBID(c.g.c) vì:
AI = ID (gt)
∠AID = ∠BID = 90o
DI chung.
+ ΔACD = ΔBCD(c.c.c) vì:
AC = BC (Lấy từ ΔAIC = ΔBIC)
AD = BD (Lấy từ ΔAID = ΔBID)
CD chung
Xét tam giác ABC và EDF có :
AB = DE ( gt )
AC = È ( gt )
Góc A = Góc E
=> Tam giác ABC = EDF ( c.g.c )
Hai tam giác trên bằng nhau và bằng nhautheo trường hợp c.g.c
Gọi G là trọng tâm của tam giác ABC\(\frac{\Rightarrow AG}{AM}=\frac{2}{3}\)
Ta có \(\hept{\begin{cases}BM=CM\\\widehat{BHM}=\widehat{CKM}=90^0\\\widehat{BMH}=\widehat{CMK}\end{cases}\Rightarrow\Delta BHM=\Delta CKM\left(\text{ cạnh huyền - góc nhọn}\right)}\)
Vì vậy \(HM=KM\) nên AM là trung tuyến của \(\Delta AHK\) mà \(\frac{AG}{AM}=\frac{2}{3}\Rightarrow G\) là trọng tâm tam giác AHK
Do phân giác trong của góc A và góc C cắt nhau tại I
=> I là nội tiếp của tam giác ABC
=> BI là phân giác góc B
Do phân giác góc ngoài tại đỉnh A và C cắt nhau tại K
Mà BI là phân giác góc B ( tính chất phân giác góc trong và 2 phân giác ngoài trùng nhau )
=> B ; I ; K thẳng hàng
Tham khảo nha !!!
hình đâu
Phải cho hình chứ bạn!!