Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.
\(x:y:z=3:4:5\)
\(\Rightarrow\frac{x}{3}=\frac{y}{4}=\frac{z}{5}\) và \(5z^2-3x^2-2y^2\)
Áp dụng tính chất của dãy tỉ số bằng nhau :
\(\Rightarrow\frac{x}{3}=\frac{y}{4}=\frac{z}{5}=\frac{5z^2-3x^2-2y^2}{5.5^2-3.3^2-2.4^2}=\frac{594}{66}=9\)
\(\Leftrightarrow\frac{x}{3}=9\Rightarrow x=9.3=27\)
\(\Leftrightarrow\frac{y}{4}=9\Rightarrow y=9.4=36\)
\(\Leftrightarrow\frac{z}{5}=9\Rightarrow z=9.5=45\)
Vậy x = 27 ; y = 36 ; z = 45
\(x+y=3\left(x-y\right)\)
\(\Rightarrow x+y=3x-3y\)
\(\Rightarrow y+3y=3x-x\)
\(\Rightarrow4y=2x\)
\(\Rightarrow2y=x\)
\(\Rightarrow x:y=2\)
\(\Rightarrow x+y=2y+y=2\)
\(\Rightarrow3y=2\)
\(\Rightarrow y=\frac{2}{3}\)
\(\Rightarrow x=\frac{4}{3}\)
Vậy \(x=\frac{4}{3};y=\frac{2}{3}\)
b) Áp dụng t/c dãy tỉ số bằng nhau,ta có:
\(\frac{1+3y}{12}=\frac{1+5y}{5x}=\frac{1+7y}{4x}=\frac{1+3y+1+5y+1+7y}{12+5x+4x}=\frac{3+15y}{12+5x+4x}=\frac{3\left(1+5y\right)}{2.3.2+5x+4x}=\frac{1+5y}{4+9x}=\frac{1+5y}{5x}\)<=> 4 + 9x = 5x
....
a/ Từ giả thiêt ta có \(\frac{x-9}{15}=\frac{y-12}{20}=\frac{z-24}{40}\Leftrightarrow\frac{x}{15}-\frac{3}{5}=\frac{y}{20}-\frac{3}{5}=\frac{z}{40}-\frac{3}{5}\)
\(\Leftrightarrow\frac{x}{15}=\frac{y}{20}=\frac{z}{40}\). Đặt \(\frac{x}{15}=\frac{y}{20}=\frac{z}{40}=k\)
\(\Rightarrow\begin{cases}x=15k\\y=20k\\z=40k\end{cases}\)
Theo đề bài : \(xy=1200\Leftrightarrow15k.20k=1200\Leftrightarrow k^2=4\Leftrightarrow k=\pm2\)
Tới đây dễ rồi nhé :)
b/ \(\frac{1+5y}{5x}=\frac{1+7y}{4x}\Leftrightarrow\frac{1+5y}{5}=\frac{1+7y}{4}\Leftrightarrow\frac{7+35y}{35}=\frac{5+35y}{20}=\frac{7+35y-5-35y}{35-20}=\frac{2}{15}\)
\(\Rightarrow y=-\frac{1}{15}\)
Thay y vào \(\frac{1+3y}{12}=\frac{1+5y}{5x}\) tìm được x = 2
Ta có : \(\frac{1+3y}{12}=\frac{1+6y}{16}=\frac{1+9y}{4x}\)
\(\Rightarrow\frac{1+3y}{12}=\frac{1+9y}{4x}=\frac{1+3y+1+9y}{12+4x}=\frac{2+12y}{12+4x}\)
\(\Rightarrow\frac{1+6y}{16}=\frac{2.\left(1+6y\right)}{12+4x}\)
Do đó : \(16=\frac{12+4x}{2}\)
Từ đó suy ra : x = 5
Bài 1 : Sửa đề :
Tìm x,y,z
\(\frac{x}{y+z+1}=\frac{y}{x+z+1}=\frac{z}{x+y-2}=x+y+z(1)\)
Ta có : \(\frac{x}{y+z+1}=\frac{y}{x+z+1}=\frac{z}{x+y-2}=x+y+z(1)\)
Áp dụng tính chất bằng nhau của tỉ lệ thức ta được :
\(\frac{x+y+z}{2\left[x+y+z\right]}=x+y+z(2)\)
Nếu x + y + z = 0 thì từ 1 suy ra : x = 0 , y = 0 , z = 0
Nếu x + y + z \(\ne\)0 thì từ 2 suy ra \(\frac{1}{2}=x+y+z\), khi đó 1 trở thành :
\(\frac{x}{\frac{1}{2}-x+1}=\frac{y}{\frac{1}{2}-y+1}=\frac{z}{\frac{1}{2}-z-2}=\frac{1}{2}\)
Do đó : \(\hept{\begin{cases}2x=\frac{3}{2}-x\\2y=\frac{3}{2}-y\\2z=-\frac{3}{2}-z\end{cases}}\Leftrightarrow\hept{\begin{cases}x=y=\frac{1}{2}\\z=-\frac{1}{2}\end{cases}}\)
Vậy có hai đáp số : \(\left[0,0,0\right]\)và \(\left[\frac{1}{2};\frac{1}{2};-\frac{1}{2}\right]\)
Bài 2 : Từ \(\frac{1+2y}{18}=\frac{1+4y}{24}=\frac{1+6y}{6x}\)
=> \(\frac{1+4y}{24}=\frac{1+2y+1+6y}{18+6x}\)
=> \(\frac{1+4y}{24}=\frac{2+8y}{2\left[9+3x\right]}\)
=> 9 + 3x = 24 => 3x = 15 => x = 5,y tự tìm
Tìm nốt bài cuối nhé
ta có: 2xx=3y=>x/3=y/2=>x/21=y/14 ; x/7=z/5=>x/21=z/15 =>x/21=y/14=z/15=>3x/63=7y/98=5z/75 ADTCDTSBN ta có 3x/63=7y/98=5z /75=3x-7y+5z=40/63-98+75=40=1 3x=1.63=63 =>x=21 ;7y=1.98=98=>y=14 ; 5z=1.75=>z=15
theo minh thấy bạn nên hỏi từng câu thì sẽ dễ giải hơn ý
MÌNH KO BIẾT ĐÚNG KO ĐÂU NHA
pt :15/(x-9)=20/(y-12) <=> 60/(4x-36)=60/(3y-36) : (Quy đồng mẫu)
=> 4x=3y
<=> x= 3y/4
kết hợp với xy= 1200 => x=30 hoặc x=-30 =>y =+-40
thế x hoặc y vào pt ban đàu ta có z= 80 (pt là phân tích, mìh ko bít gõ phân số nên thông cảm :D)