K
Khách

Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.

5 tháng 11 2019

Ta có:

xy+4x=35+5y

\(\Leftrightarrow\)x(y+4)=20+15+5y

\(\Leftrightarrow\)x(y+4)=5(y+4)+15

\(\Leftrightarrow\)x(y+4)+5(y+4)=15

\(\Leftrightarrow\)(x+5)(y+4)=15

Ta có bảng:

x+5-15-5-3-113515
y+4-1-3-5-1515531
x-20-10-8-6-4-2010
y-5-7-9-19111-1-3

Vậy................

5 tháng 11 2019

<=>xy+4x-5y=35
<=>xy+4x-5y-20=15
<=> x(y+4) -5(y+4)=15=1.15=(-1)(-15)=3.5=.....
Ta có bảng.....
k nhé :3

3 tháng 9 2019

a) xy + 4x = 35 + 5y

=> xy + 4x - 5y = 35

=> x(y + 4) - 5(y + 4) = 15

=> (x - 5)(y + 4) = 15

=> x - 5;y + 4 \(\in\)Ư(15) = {1; 3; 5; 15}

Lập bảng :

x - 5 1 3 5 15
y + 4 15 5 3 1
  x 6 8 10 20
  y 11 1 -1(loại)-3(loại)

Vậy ...

3 tháng 9 2019

b)  2|x| + y2 + y = 2x + 1

Ta có: 2x + 1 là số lẻ => 2|x| + y2 + y là số lẻ

Mà y2 +  y = y(y + 1) là số chẵn => 2|x| là số lẻ

                              <=> 2|x| = 1 <=> 2|x| = 20 <=> |x| = 0 <=> x = 0

Với x = 0 => 20 + y2 + y = 2.0 + 1

=> 1 + y2 + y = 1

=> y(y + 1) = 0

=> \(\orbr{\begin{cases}y=0\\y+1=0\end{cases}}\)

=> \(\orbr{\begin{cases}y=0\\y=-1\end{cases}}\)

Do x; y \(\in\)N => x = y = 0 (tm)

29 tháng 9 2019

xy + 4x = 35 + 5y

=> xy + 4x - 5y = 35

=> x(y + 4) - 5(y + 4) = 15

=> (x - 5)(y + 4) = 15

=> x - 5; y + 4 \(\in\)Ư(15) = {1; -1; 3; -3; 5; -5; 15; -15}

Lập bảng :

   x - 5    1  -1   3   -3   5  -5  15  -15
  y + 4   15 -15   5   -5   3  -3  1   -1
   x    6  4   8    2  10   0  20 -10
   y   11  19   1   -9  -1  -7  -3   -5

Vậy ...

8 tháng 3 2018

Không mất tính tổng quát giả sử: \(x\ge y\ge z>0\)

Ta có: \(xy\ge yz;xy\ge xz\)

Ta có: \(xy+yz+xz\le3xy\)

\(\Rightarrow xyz\le3xy\Leftrightarrow z\le3\)

Xét với \(z\in\left\{3;2;1\right\}\left(z\in Z^+\right)\)

14 tháng 3 2018

Không mất tính tổng quát giả sử: x≥y≥z>0

Ta có: xy≥yz;xy≥xz

Ta có: xy+yz+xz≤3xy

⇒xyz≤3xy⇔z≤3

Xét với z∈{3;2;1}(z∈Z+)

 ...

9 tháng 4 2018

Ta có:\(\left|19x+5y\right|+1975=\left|19y+5x\right|+2014^x\)

\(\Leftrightarrow\left|19x+5y\right|-\left|19y+5x\right|=2014^x-1975\)

Vì \(19x+5y-\left(19y+5x\right)=19x+5y-19y-5x=14x-14y⋮2\)

nên \(\left|19x+5y\right|-\left|19y+5x\right|⋮2\)\(\Rightarrow2014^x-1975⋮2\)

\(\Rightarrow2014^x\) lẻ\(\Rightarrow x=0\)

Thay x=0 vào ta có:\(\left|5y\right|-\left|19y\right|=-1974\)

\(y\ge0\) nên \(\hept{\begin{cases}5y\ge0\\19y\ge0\end{cases}}\)\(\Rightarrow\hept{\begin{cases}\left|5y\right|=5y\\\left|19y\right|=19y\end{cases}}\)\(\Rightarrow5y-19y=-1974\)

\(\Rightarrow-14y=-1974\Rightarrow y=141\)

Vậy x=0,y=141 thỏa mãn

13 tháng 6 2019

\(\left|19x+5y\right|+1975=\left|19y+5x\right|+2014^x\)

\(\Leftrightarrow1975-2014^x=\left|19y+5x\right|-\left|19x+5y\right|\)

\(\Leftrightarrow1975-2014^x=\left(\left|19y+5x\right|+19y+5x\right)-\left(\left|19x+5y\right|+19x+5y\right)-14\left(x+y\right)\left(1\right)\)

Ta có bổ đề:\(\left|a\right|+a\) là số chẵn với \(\forall a\in Z\)

\(\Rightarrow\left(1\right)\)chẵn/\(\Rightarrow2014^x\) lẻ \(\Rightarrow x=0\)

Thay \(x=0\) vào \(pt\) và kết hợp với \(x,y\in N\) thì tìm được \(x=0;y=141\)

7 tháng 3 2022

Ta có: \(6x^2+5y^2=74>6x^2\Leftrightarrow x^2< \dfrac{37}{3}\Leftrightarrow x^2\in\left\{0,1,4,9\right\}\)

\(x^2=0\Rightarrow x=0\) thay x=0 pt ta có:

\(6x^2+5y^2=74\\ \Leftrightarrow6.0^2+5y^2=74\\ \Leftrightarrow5y^2=74\\ \Leftrightarrow y^2=\dfrac{74}{5}\left(ktm\right)\)

\(x^2=1\Leftrightarrow x=\pm1\) thay x=\(\pm1\) pt ta có:

\(6x^2+5y^2=74\\ \Leftrightarrow6.\left(\pm1\right)^2+5y^2=74\\ \Leftrightarrow6+5y^2=74\\ \Leftrightarrow y^2=\dfrac{68}{5}\left(ktm\right)\)

\(x^2=4\Leftrightarrow x=\pm2\) thay x=\(\pm2\) pt ta có:

\(6x^2+5y^2=74\\ \Leftrightarrow6.\left(\pm2\right)^2+5y^2=74\\ \Leftrightarrow6.4+5y^2=74\\ \Leftrightarrow24+5y^2=74\\ \Leftrightarrow y^2=10\left(ktm\right)\)

\(x^2=9\Leftrightarrow x=\pm3\) thay x=\(\pm3\) vào pt ta có:

\(6x^2+5y^2=74\\ \Leftrightarrow6.\left(\pm3\right)^2+5y^2=74\\ \Leftrightarrow6.9+5y^2=74\\ \Leftrightarrow54+5y^2=74\\ \Leftrightarrow y^2=4\\ \Leftrightarrow y=\pm2\)

Vậy \(\left(x,y\right)\in\left\{\left(-3;-2\right);\left(-3;2\right);\left(3;-2\right);\left(3;2\right)\right\}\)

 

8 tháng 3 2022

Ta có: 

\(6\left(x^2-4\right)=5\left(10-y^2\right)\left(1\right)\)

\(\Rightarrow6\left(x^2-4\right)⋮5\Leftrightarrow\left(6;5\right)=1\)

\(\Rightarrow x^2-4⋮5\Leftrightarrow x^2=5k+4\left(k\inℕ\right)\)

Đặt \(\left(1\right)=x^2-4=5k\)ta lại có:

\(\Rightarrow y^2=10-6k\)

Mà \(\hept{\begin{cases}x^2>0\\y^2>0\end{cases}}\Rightarrow\hept{\begin{cases}5k+4>0\\10-6k>0\end{cases}}\)

\(\Rightarrow-\frac{4}{5}< k< \frac{5}{3}\Leftrightarrow\orbr{\begin{cases}k=0\left(loại\right)\\k=1\end{cases}}\)

\(k=1\Leftrightarrow\hept{\begin{cases}x^2=9\\y^2=4\end{cases}}\Rightarrow\hept{\begin{cases}x=\pm3\\y=\pm2\end{cases}}\)

Vậy cặp \(\left(x,y\right)\in\left\{\left(-3;-2\right);\left(3;2\right)\right\}\)

1 tháng 2 2017

\(4x=5y\Rightarrow\frac{x}{5}=\frac{y}{4}\Rightarrow\left(\frac{x}{5}\right)^2=\left(\frac{y}{4}\right)^2=\frac{x^2}{25}=\frac{y^2}{16}\)

Áp dụng TC DTSBN ta có :

\(\frac{x^2}{25}=\frac{y^2}{16}=\frac{x^2-y^2}{25-16}=\frac{1}{9}\)

\(\Rightarrow\frac{x^2}{25}=\frac{1}{9}\Rightarrow x^2=\frac{25}{9}\Rightarrow x=\frac{-5}{3};\frac{5}{3}\)

\(\Rightarrow\frac{y^2}{16}=\frac{1}{9}\Rightarrow y^2=\frac{16}{9}\Rightarrow y=\frac{-4}{3};\frac{4}{3}\)

1 tháng 2 2017

Ta có 

4x=5y và x2-y2=1

Có \(\frac{x}{5}=\frac{y}{4}\)và x2-y2=1

Áp dụng tính chất của dãy tỉ số bằng nhau:

\(\frac{x}{5}=\frac{y}{4}=\frac{x^2-y^2}{5^2-4^2}=\frac{1}{9}\)

Suy ra: \(\frac{x^2}{5^2}=\frac{1}{9}\)=>\(x^2=\frac{1}{9}.25=\frac{25}{9}\)=>\(x=\frac{5}{3}or\frac{-5}{3}\)

    Cách tìm y tương tự như vậy

Kq cuối cùng là \(x=\frac{5}{3}or\frac{-5}{3}\)\(y=\frac{4}{3}or\frac{-4}{3}\)

2 tháng 10 2023

`#3107.101107`

`4x = 5y => x/5 = y/4`

Đặt `x/5 = y/4 = k`

`=> x = 5k; y = 4k`

Ta có: `x^2 - y^2 = 1`

`=> (5k)^2 - (4k)^2 = 1`

`=> 25k^2 - 16k^2 = 1`

`=> 9k^2 = 1`

`=> k^2 = 1 \div 9`

`=> k^2 = 1/9`

`=> k^2 = (+-1/3)^2`

`=> k = +-1/3`

Với `k = 1/3`

`=> x = 1/3*5 = 5/3; y = 1/3*4 = 4/3`

Với `k = -1/3`

`=> x = -1/3*5 = -5/3; y = -1/3*4 = -4/3.`