Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.
a, 90 chia hết cho x => x ∈ Ư(90) = {1;2;3;5;6;9;10;15;18;30;45;90}
b, x chia hết cho 60 => x ∈ B(60) = {0;60;120;180;240;…} mà 59 < x < 180 => x ∈ {60;120;180}
c, x là số nhỏ nhất khác 0 và x chia hết cho cả 12 và 18 => x = BCNN(12;18)
12 = 2 2 . 3 ; 18 = 2 . 3 2 ; x = BCNN(12;18) = 2 2 . 3 2 = 4.9 = 36
a. Ta có :
40 = 2^3*5
60 = 2^2*3*5
=> UCLN (40;60 ) = 2^2*5 = 20
=> UC(40;60) = U(20 ) = { 0;20;40 ;60;80;...}
b. Vì x chia hết cho 10;12;15
=> x \(\in\) BC (10;12;15)
Ta có :
10 = 2*5
12 = 2^2*3
15 = 3*5
=> BCNN (10;12;15) = 2^2*3*5 = 60
=> BC (10;12;15) = B (60 ) = { 0;60;120;180;240;...}
Vì 100<x<150
Nên x = 120
c. Vì 480 chia hết cho x , 600 chia hết cho x và x lớn nhất nên
x là UCLN (480;600 )
Ta có :
480 = 2^5*3*5
600 = 2^3*3*5^2
=> UCLN (480 ; 600 ) = 2^3*3*5 = 120
Vậy x = 120
d. Vì x chia hết cho 12,25,30
Nên x \(\in\) BC (12;25;30)
Ta có :
12 = 2^2*3
25 = 5^2
30 = 2*3*5
=> BCNN (12;25;30) = 2^2*3*5^2=300
=> BC (12;25;30) = B(300) = { 0;300;600;...}
Vì 0<x<500
Nên x = 300
a: Vì y là số nguyên tố
mà y là ước của 28
nên y=2
=>x=14
b: Theo đề, ta có: x=BCNN(36;90)
hay x=180
Bài 3:
a chia 36 dư 12 số đó có dạng \(a=36k+12\left(k\in N\right)\)
\(\Rightarrow a=4\left(9k+3\right)\) nên a chia hết cho 4
Mà: \(9k\) ⋮ 3 ⇒ \(9k+3\) không chia hết cho 3
Nên a không chia hết cho 3
Bài 4:
a) \(x\in B\left(7\right)\) \(\Rightarrow x\in\left\{0;7;14;21;28;35;42;49;...\right\}\)
Mà: \(x\le35\)
\(\Rightarrow x\in\left\{0;7;14;21;28;35\right\}\)
b) \(x\inƯ\left(18\right)\Rightarrow x\in\left\{1;2;3;6;9;18\right\}\)
Mà: \(4< x\le10\)
\(\Rightarrow x\in\left\{6;9\right\}\)