K
Khách

Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.

8 tháng 8 2018

để 12 chia hết cho n-1=> n-1 thuộc U(12)={1,2,3,4,6,12}

=> n={2,3,4,5,7,13}

để 20 chia hết cho 2n+1=> 2n+1 thuộc U(20)={1,2,4,5,10,20}

=> 2n={0,1,3,4,9,19}

=> n={0,2}

vậy ...

tk mk nha

8 tháng 8 2018

ok ban

30 tháng 10 2016

a) n=1;2;5;10.

b) n=0;1;3;4;9;20.

c) n=2;3;4;5;7;11.)

1 tháng 8 2015

1. Gọi số đó là n. Ta có n-1 chia hết cho 2; 3; 4; 5; 6

Để n nhỏ nhất thì n-1 nhỏ nhất. Vậy ta đi tìm BCNN của các số trên là 60

n-1 chia hết cho 60 hay n-1 = 60k <=> n = 60k + 1 (*)

n chia hết cho 7 => 60k + 1 chia hết cho 7

<=> 60k ≡ -1 (mod 7) <=> 56k + 4k ≡ -1 (mod 7) <=> 4k ≡ -1 (mod 7)

<=> 4k ≡ 6 (mod 7) <=> 2k ≡ 3 (mod 7) <=> 2k ≡ 10 (mod 7) <=> k ≡ 5 (mod 7)

Vậy k nhỏ nhất là 5

Thế vào (*): n = 301 thỏa mãn

2. a) n = 25k - 1 chia hết cho 9

<=> 25k ≡ 1 (mod 9) <=> 27k - 2k ≡ 1 (mod 9) <=> -2k ≡ 1 (mod 9) <=> -2k ≡ 10 (mod 9)

<=> -k ≡ 5 (mod 9) <=> k ≡ 4 (mod 9)

Để n nhỏ nhất thì k nhỏ nhất, vậy k là 4

Thế vào trên được n = 99 thỏa mãn

b) ... -3k ≡ 1 (mod 21) <=> -21k ≡ 7 (mod 21) => Vô lý vì -21k luôn chia hết cho 21

Vậy không có n thỏa mãn

c) Đặt n = 9k

9k ≡ -1 (mod 25) <=> 9k ≡ 24 (mod 25) <=> 3k ≡ 8 (mod 25) <=> 3k ≡ 33 (mod 25)

<=> k ≡ 11 (mod 25) => k = 25a + 11 (1)

9k ≡ -2 (mod 4) <=> 9k ≡ 2 (mod 4) <=> k ≡ 2 (mod 4) => k = 4b + 2 (2)

Từ (1) và (2) => 25a + 11 = 4b + 2 <=> 25a + 9 = 4b => 25a + 9 ≡ 0 (mod 4)

<=> a + 1 ≡ 0 (mod 4) (*)

Lưu ý rằng n tự nhiên nhỏ nhất => k tự nhiên nhỏ nhất => a tự nhiên nhỏ nhất. Vậy a thỏa mãn (*) là a = 3 => n = 774 thỏa mãn

Mình không được dạy dạng toán này nên không biết cách trình bày, cách giải cũng là mình "tự chế" nên nhiều chỗ hơi "lạ" một chút, không biết đúng không nữa :D

13 tháng 10 2015

1. n = 301

2.a) n = 99

b) không có

c) n = 774

13 tháng 11 2018

1)2n+5-2n-1

=>4 chia hết cho 2n-1

ước của 4 là 1 2 4

2n-1=1=>n=.....

tiếp với 2 và 4 nhé

18 tháng 12 2018

\(a,n+20⋮n+2\)

\(\Leftrightarrow n+2+18⋮n+2\)

\(\Leftrightarrow18⋮n+2\)

Vì n là stn

=> n  + 2> 2

Ta có bảng:

n + 2                               2                               3                                      6                                  9                                     18                                   
n014716

Vậy.........

\(b,2n+18⋮n+3\)

\(\Leftrightarrow2\left(n+3\right)+12⋮n+3\)

\(\Leftrightarrow12⋮n+3\)

Vì n là stn => n + 3 > 3

Ta có bảng

n + 3                                  3                                   4                                 6                              12                          
0139

Vậy 

4 tháng 9 2015

12 chia hết cho 2 ; 3 ; 4 ; 6 ; 12 . vậy n = { 1 ; 2 ; 3 ; 5 ; 11 }

20 chia hết cho 2 ; 4 ; 5 ; 10 ; 20 . vậy n = { 1 ; 3 ; 4 ; 9 ; 19 }