Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.
Do a chia hết cho b => \(b\inƯ\left(a\right)\)(1)
Do b chia hết cho a => \(b\in B\left(a\right)\)(2)
Từ (1) và (2) => a = b
Vậy a = b; a, b\(\in N\)
Vì a,b \(\in\) N nên (a; b) \(\in\) {(1; 1); (1;2); (2;1); (2;3); (3;2)}
Vì a , b thuộc N nên ( a ; b ) thuộc { ( 1 ; 1 ) ; ( 1 ; 2 ) ; ( 2 ; 1 ) ; ( 2 ; 3 ) ; ( 3 ; 2 ) }
Lời giải:
Bản thân $a,b$ là các số chia nên $a,b\neq 0$
$a+2\vdots b$ nên $a+2=bk$ với $k$ là số tự nhiên khác $0$.
$\Rightarrow a=bk-2$
$b+3\vdots a$
$\Rightarrow b+3\vdots bk-2$.
Hiển nhiên với $b$ tự nhiên thì $b+3>0$. Do đó để $b+3$ là bội của $bk-2$ thì:
$b+3\geq bk-2$
$\Rightarrow b(k-1)\leq 5$.
Xét các TH:
TH1: $k=1$ thì $a=b-2$. Khi đo $b+3\vdots a$ tức là $b+3\vdots b-2$
$\Rightarrow b-2+5\vdots b-2\Rightarrow 5\vdots b-2$
$\Rightarrow b-2\in \left\{\pm 1; \pm 5\right\}$
$\Rightarrow............$
TH2: $k>1$ thì $b(k-1)>0$. Mà $b(k-1)\leq 5$ nên $b(k-1)\in \left\{1; 2; 3; 4; 5\right\}$
Đây là dạng PT tích cơ bản. Bạn xét các TH là ra.
a chia hết b và b chia hết a => a E Ư(b) và b E Ư(a) =>a=1,b và b=1,a. (Vì a,b>0) Vậy a=b hoặc a=b=1
=> a = b
hoặc a = -b