K
Khách

Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.

12 tháng 7 2018

Đáp án B

20 tháng 4 2022

x2 - (m-1)x + 2m-6 = 0 

a)xét delta 

(m-1)2 - 4(2m-6) = m2 - 2m + 1 - 8m + 24 

= m- 10m + 25 = (m-5)2 ≥ 0 

=> pt luôn có 2 nghiệm với mọi m thuộc R 

b) theo Vi-ét ta có 

\(\left\{{}\begin{matrix}x1+x2=m-1\\x1x2=2m-6\end{matrix}\right.\)

theo đề ta có \(A=\dfrac{2x1}{x2}+\dfrac{2x2}{x1}\)  đk: m ≠ 3 

A = \(\dfrac{2x1^2+2x2^2}{x1x2}=\dfrac{2\left(\left(x1+x2\right)^2-2x1x2\right)}{2m-6}\)

A=\(\dfrac{m^2-6m+25}{m-3}\)

để A có giá trị nguyên thì m2 - 6m + 25 ⋮ m - 3 

m2 - 6m + 9 + 16 ⋮ m - 3 

(m-3)2 + 16 ⋮ m-3 

16 ⋮ m - 3 => m-3 thuộc ước của 16 

U(16) = { - 16; - 8; - 4; -2 ; -1 ; 1 ; 2; 4; 8; 16 }

=> m- 3 =  { - 16; - 8; - 4; -2 ; -1 ; 1 ; 2; 4; 8; 16 }

m = { - 13 ; -5 ; -1; 1; 2; 4; 5; 7; 11; 19 }

4 tháng 11 2019

Từ PT (1) ta có: y = (a + 1)x – (a + 1) (*) thế vào PT (2) ta được:

x + ( a – 1 ) [ ( a + 1 ) x – ( a + 1 ) ] = 2   x + ( a 2 – 1 ) x – ( a 2 – 1 ) = 2

⇔ a 2 x = a 2 + 1   ( 3 )

Với a ≠ 0, phương trình (3) có nghiệm duy nhất x = a 2 + 1 a 2 . Thay vào (*) ta có:

y = ( a + 1 ) a 2 + 1 a 2 − ( a + 1 ) = a + 1 a 2 + 1 − a 2 a 2 + 1 a 2 = a 3 + a + a 2 + 1 − a 3 − a 2 a 2 = a + 1 a 2  

Suy ra hệ phương trình đã cho có nghiệm duy nhất ( x ;   y ) = a 2 + 1 a 2 ; a + 1 a 2

Hệ phương trình có nghiệm nguyên: x ∈ ℤ y ∈ ℤ ⇔ a 2 + 1 a 2 ∈ ℤ a + 1 a 2 ∈ ℤ ( a ∈ ℤ )  

Điều kiện cần: x = a 2 + 1 a 2 = 1 + 1 a 2 ∈ ℤ ⇔ 1 a 2 ∈ ℤ mà a 2 > 0   ⇒ a 2 = 1

⇔ a = ± 1 ( T M   a ≠ 0 )

Điều kiện đủ:

a = −1 ⇒  y = 0  (nhận)

a = 1 y = 2  (nhận) 

Vậy a = ± 1 hệ phương trình đã cho có nghiệm nguyên.

Đáp án: D

\(\Delta=\left(-m+3\right)^2-4\cdot\left(-5\right)=m^2-6m+9+20=m^2-6m+29=\left(m-3\right)^2+20>0\)

=>Phương trình có hai nghiệm phân biệt

\(\Leftrightarrow m-3\in Z\Leftrightarrow m\in Z\)

a: Δ=(2m-1)^2-4*(-1)(m-m^2)

=4m^2-4m+1+4m-4m^2=1>0

=>(1) luôn có hai nghiệm phân biệt

b: m=x1-2x1x2+x2-2x1x2

=x1+x2-4x1x2

=2m-1+4(m-m^2)

=>m-2m+1-4m+4m^2=0

=>4m^2-5m+1=0

=>m=1 hoặc m=1/4

c: x1+x2-2x1x2

=2m-1+2m-2m^2=-2m^2+4m-1

=-2m^2+4m-2+1

=-2(m-1)^2+1<=1

bn tham khảo câu hỏi tương tự nha

16 tháng 5 2021

1) điều kiện của m: m khác 5/2

thế x=2 vào pt1 ta đc:

(2m-5)*4 - 4(m-1)+3=0 <=> 8m-20-4m+4+3=0<=> 4m = 13 <=> m=13/4 (nhận)

lập △'=[-(m-1)]2-*(2m-5)*3 = (m-4)2

vì (m-4)2 ≥ 0 nên phương trình có nghiệm kép => x1= x2 =2

3) vì △'≥0 với mọi m nên phương trình đã cho có nghiệm với mọi m

 

 

a) Thay \(a=0\) vào phương trình, ta được:

 \(x^2-2x-3=0\) \(\Leftrightarrow\left[{}\begin{matrix}x=3\\x=-1\end{matrix}\right.\)

Vậy ...

b) Ta có: \(\Delta'=4-3a\) 

Để phương trình có 2 nghiệm x1 và x2 \(\Leftrightarrow\Delta'\ge0\) \(\Leftrightarrow a\le\dfrac{4}{3}\)

 Vậy ...

c) Phương trình có nghiệm bằng -1 

\(\Rightarrow1+2\left(1-a\right)+a^2+a-3=0\) 

\(\Leftrightarrow a^2-a=0\) \(\Rightarrow\left[{}\begin{matrix}a=1\\a=0\end{matrix}\right.\)

Vậy ... 

17 tháng 1 2021

pt: \(x^2+2\left(a-1\right)x+a^2+a-3=0\) (1)

a) khi a=0 pt(1) \(\Leftrightarrow x^2-2x-3=0\Leftrightarrow\left[{}\begin{matrix}x=-1\\x=3\end{matrix}\right.\)

b) \(\Delta'=b'^2-ac=\left(a-1\right)^2-\left(a^2+a-3\right)=-3a+4\)

phương trình có 2 nghiệm phân biệt khi \(\Delta'>0\Leftrightarrow-3a+4>0\Leftrightarrow a< \dfrac{4}{3}\)

c) pt(1) có nghiệm x=-1 \(\Leftrightarrow\left(-1\right)^2+2\left(a-1\right).\left(-1\right)+a^2+a-3=0\)

\(\Leftrightarrow a^2-a=0\Leftrightarrow\left[{}\begin{matrix}a=0\\a=1\end{matrix}\right.\)