Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.
Tìm các số thõa mãn m, n để các phếp chia sau thức hiện được
a, 3x^3y^5 : 5x^my^n
b, 6x^3y^n : 2x^my^3
a: \(=\dfrac{2xy\left(2x^2y-4x+5\right)}{2xy}=2x^2y-4x+5\)
b: \(=\dfrac{x^2y\left(7x^2y-2y-5x^2y^3\right)}{3x^2y}=\dfrac{7}{3}x^2y-\dfrac{2}{3}y-\dfrac{5}{3}x^2y^3\)
Câu 2:
\(=\dfrac{x^2\left(2x-5\right)+3\left(2x-5\right)}{2x-5}=x^2+3\)
Câu 3:
\(\Leftrightarrow2n^2-4n+5n-10+3⋮n-2\)
\(\Leftrightarrow n-2\in\left\{1;-1;3;-3\right\}\)
hay \(n\in\left\{3;1;5;-1\right\}\)
Ta có : 3(2x - 1)2 \(\ge0\forall x\)
7(3y + 5)2 \(\ge0\forall x\)
Mà : 3(2x - 1)2 + 7(3y + 5)2 = 0
Nên : 3(2x - 1)2 = 7(3y + 5)2 = 0
\(\Leftrightarrow\hept{\begin{cases}3\left(2x-1\right)^2=0\\7\left(3y+1\right)^2=0\end{cases}}\)
\(\Leftrightarrow\hept{\begin{cases}\left(2x-1\right)^2=0\\\left(3y+1\right)^2=0\end{cases}}\)
\(\Leftrightarrow\hept{\begin{cases}\left(2x-1\right)=0\\\left(3y+1\right)=0\end{cases}}\)
\(\Leftrightarrow\hept{\begin{cases}2x=1\\3y=-1\end{cases}}\)
\(\Leftrightarrow\hept{\begin{cases}x=\frac{1}{2}\\y=-\frac{1}{3}\end{cases}}\)
Thực hiện các phép tính sau:
\(\text{a) 3x². (2x³ – x + 5)=}6x^6-3x^3+15x^2\)
\(\text{ b) (4xy + 3y – 5x). x²y}=4x^3y^2+3x^2y^2-5x^3y\)
\(\text{ d) ( 3x – 5 )( x²– 5x + 7 )}=3x^3+21x-35\)
Học tốt
a)=6x^5-3x^3+15x^2
b)=4x^3y^2+3x^2y^2-5x^3y
c)=3x^3-5x^2-15x^2+25x+21x-35=3x^3-20x^2+46x-35
\(=\left(x^2+2x+1\right)+\left(y^2-8y+16\right)=\left(x+1\right)^2+\left(y-4\right)^2\ge0\forall x,y\)
dấu "=" xảy ra \(\Leftrightarrow\left\{{}\begin{matrix}x=-1\\y=4\end{matrix}\right.\)