K
Khách

Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.

9 tháng 4 2017

Ta có :

\(\left|x-y\right|\) có cùng tính chất chẵn lẻ với \(x-y\)

\(\left|y-z\right|\) có cùng tính chất chẵn lẻ với \(y-z\)

\(\left|z-t\right|\)  có cùng tính chất chẵn lẻ với \(z-t\)

\(\left|t-x\right|\)  có cùng tính chất chẵn lẻ với \(t-x\)

\(\Rightarrow\left|x-y\right|+\left|y-z\right|+\left|z-t\right|+\left|t-x\right|\) có cùng tính chất chẵn lẻ với \(x-y+y-z+z-t+t-x=0\)

\(\Rightarrow\left|x-y\right|+\left|y-z\right|+\left|z-t\right|+\left|t-x\right|\) luôn chẵn

Mà 2015 lẻ \(\Rightarrow\) không có số nguyên x ; y ; z ; t nào thỏa mãn đề bài

3 tháng 7 2016

Ta có:

(x - y) + (y - z) + (z - x)

= x - y + y - z + z - x

= 0

Do |x - y| + |y - z| + |z - x| có cùng tính chẵn lẻ với (x - y) + (y - z) + (z - x)

Mà (x - y) + (y - z) + (z - x) chẵn => |x - y| + |y - z| + |z - x| chẵn

Vậy ta không tìm được giá trị nguyên của x, y, z thỏa mãn đề bài

Ủng hộ mk nha ^_-

3 tháng 7 2016

x;y;z có vai trò tương đương nên giả sử \(x\ge y\ge z\)thì PT đê bài :

<=> x - y + y - z -(z - x) =2015

<=> 2(x - z) =2015 (*)

x, z nguyên thì Vế trái của (*) là chẵn không thể = Vế phải của (*) là 1 số lẻ.

Nên, không có giá trị nguyên nào của x; y; z thỏa mãn đề bài.

9 tháng 4 2015

Nhận xét: Với 2 số nguyên x ; y ta có: |x - y| và x - y có cùng tính chẵn lẻ 

mà x - y và x + y có cùng tính chẵn lẻ (Có thể chỉ ra bằng 3 trường hợp: 2 số hoặc cùng chẵn hoặc cùng lẻ hoặc 1 số chăn 1 số lẻ)

Do đó, |x - y| và x+ y có cùng tính chẵn lẻ

=>  |y-x| +  |y-z| +  |t-z| +  |t-x| và (y + x) + (y + z) + (t +z) + (t + x) có cùng tính chẵn lẻ mà

(y + x) + (y + z) + (t +z) + (t + x) = 2.(x+ y + z + t) chẵn nên  |y-x| +  |y-z| +  |t-z| +  |t-x| chẵn nên không thể = 2015

=> không có giá trị x; y ; z; t nào thoả mãn đề bài

15 tháng 5 2017

k mk đi

8 tháng 1 2018

Ta có:\(\left|n\right|+n=\left[{}\begin{matrix}2n\text{ với }n\ge0\\0\text{ với }n< 0\end{matrix}\right.\Rightarrow n⋮2\forall n\left(\circledast\right)\)

\(|x - y|+|y-z|+|z-t|+|t-\color{red}{x}|=2017\)

\(\Leftrightarrow\left|x-y\right|+x-y+\left|y-z\right|+y-z+\left|z-t\right|+z-t+\left|t-z\right|+t-z=2017\)

Từ \(\circledast\) ta có:

\(\left\{{}\begin{matrix}\left|x-y\right|+x-y⋮2\\\left|y-z\right|+y-z⋮2\\\left|z-t\right|+z-t⋮2\\\left|t-x\right|+t-x⋮2\end{matrix}\right.\)

\(\Rightarrow\left|x-y\right|+x-y+\left|y-z\right|+y-z+\left|z-t\right|+z-t+\left|t-z\right|+t-z⋮2\)

\(2017⋮̸2\) nên không tìm được \(x,y,z,t \in \mathbb{Z}\) thỏa mãn.