K
Khách

Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.

8 tháng 9 2021

\(a,\Leftrightarrow\left(9x^2-18x+9\right)+\left(y^2-6y+9\right)+\left(2z^2+4z+2\right)=0\\ \Leftrightarrow9\left(x-1\right)^2+\left(y-3\right)^2+2\left(z+1\right)^2=0\\ \Leftrightarrow\left\{{}\begin{matrix}x=1\\y=3\\z=-1\end{matrix}\right.\)

\(b,\Leftrightarrow\left(4x^2+8xy+4y^2\right)+\left(x^2-2x+1\right)+\left(y^2+2y+1\right)=0\\ \Leftrightarrow4\left(x+y\right)^2+\left(x-1\right)^2+\left(y+1\right)^2=0\\ \Leftrightarrow\left\{{}\begin{matrix}x=-y\\x=1\\y=-1\end{matrix}\right.\Leftrightarrow\left\{{}\begin{matrix}x=1\\y=-1\end{matrix}\right.\)

\(c,\Leftrightarrow\left(4x^2+4xy+y^2\right)+\left(x^2-2x+1\right)+\left(y^2+4y+4\right)=0\\ \Leftrightarrow\left(2x+y\right)^2+\left(x-1\right)^2+\left(y+2\right)^2=0\\ \Leftrightarrow\left\{{}\begin{matrix}2x=-y\\x=1\\y=-2\end{matrix}\right.\Leftrightarrow\left\{{}\begin{matrix}x=1\\y=-2\end{matrix}\right.\)

 

8 tháng 9 2021

a,9x^2+y^2+2z^2−18x+4z−6y+20=0

⇔9(x−1)^2+(y−3)^2+2(z+1)^2=0

⇔x=1;y=3;z=−1

b,5x^2+5y^2+8xy+2y−2x+2=0

⇔4(x+y)2+(x−1)2+(y+1)2=0

⇔x=−y;x=1y=−1⇔x=1y=−1

c,5x^2+2y^2+4xy−2x+4y+5=0

⇔(2x+y)^2+(x−1)^2+(y+2)^2=0

⇔2x=−y;x=1;y=−2

⇔x=1;y=−2

d,x^2+4y^2+z^2=2x+12y−4z−14

⇔(x−1)^2+(2y−3)^2+(z+2)^2=0

⇔x=1;y=3/2;z=−2

e: Ta có: x^2−6x+y2+4y+2=0

⇔x^2−6x+9+y^2+4y+4−11=0

⇔(x−3)^2+(y+2)^2=11

Dấu '=' xảy ra khi x=3 và y=-2

 

21 tháng 10 2021

a) \(2x^2+2x+1=0\)

\(\Rightarrow2x^2+2x=-1\)

\(\Rightarrow2x\left(x+1\right)=-1\)

⇒ Pt vô nghiệm

 

 

21 tháng 10 2021

a: \(2x^2+2x+1=0\)

\(\text{Δ}=2^2-4\cdot2\cdot1=4-8=-4< 0\)

Vì Δ<0 nên phương trình vô nghiệm

18 tháng 10 2021

\(a,A=\left(x+y\right)^2-9z^2=\left(x+y-3z\right)\left(x+y+3z\right)\\ A=\left(5+7-36\right)\left(5+7+36\right)=-24\cdot48=-1152\\ b,B=\left(2x-y\right)\left(2x+y\right)+\left(2x+y\right)=\left(2x+y\right)\left(2x-y-1\right)\\ B=\left(2+2\right)\left(2-2-1\right)=4\cdot\left(-1\right)=-4\)

29 tháng 3 2018

a) (x + 3)(x2 – 3x + 9) – (54 + x3)

= ( x + 3)(x2 – 3.x + 32) – (54 + x3)

= x3 + 33 – (54 + x3)

= x3 + 27 – 54 – x3

= -27

b) (2x + y)(4x2 – 2xy + y2) – (2x – y)(4x2 + 2xy + y2)

= (2x + y)[(2x)2 – 2x.y + y2] – (2x – y)[(2x)2 + 2x.y + y2]

= [(2x)3 + y3] – [(2x)3 – y3]

= (2x)3 + y3 – (2x)3 + y3

= 2y3

29 tháng 3 2018

a) (x + 3)(x2 – 3x + 9) – (54 + x3)

= ( x + 3)(x2 – 3.x + 32) – (54 + x3)

= x3 + 33 – (54 + x3) = x3 + 27 – 54 – x3

= -27

b) (2x + y)(4x2 – 2xy + y2) – (2x – y)(4x2 + 2xy + y2) 

= (2x + y)[(2x)2 – 2x.y + y2] – (2x – y)[(2x)2 + 2x.y + y2]

= [(2x)3 + y3] – [(2x)3 – y3]

= (2x)3 + y3 – (2x)3 + y3

= 2y3 

12 tháng 7 2023

a) \(x^2+2xy^3-3z+4xy-5xy^2+2xy-5z\)

\(=x^2+2xy^3-5xy^2-\left(3z+5z\right)+\left(4xy+2xy\right)\)

\(=x^2+2xy^3-5xy^2-8z+6xy\)

b) \(\left(x-3y\right)\left(x^2-3xy+9y^2\right)\)

\(=\left(x-3y\right)\left[x^2-x\cdot3y+\left(3y\right)^2\right]\)

\(=x^3-\left(3y\right)^3\)

\(=x^3-27y^3\)

c) \(\left(2x-y\right)\left(2x+y\right)\)

\(=\left(2x\right)^2-y^2\)

\(=4x^2-y^2\)

d) \(\left(3x-y\right)\left(2y+5\right)-16x4y\)

\(=6xy+15x-2y^2-5y-64xy\)

\(=-58xy+15x-2y^2-5y\)

12 tháng 7 2023

Bạn xem lại đề bài nhé!

Trog những HĐT trên chắc là

bn đánh máy thiếu số mũ nhỉ??

Phải ko

23 tháng 9 2019

1.\(\left(2x+y\right)\left(4x^2-2xy+y^2\right)-\left(2x-y\right)\left(4x^2+2xy+y^2\right)\)

\(=\left(2x\right)^3+y^3-\left(2x\right)^3+y^3=2y^3\)

2. \(2\left(2x+1\right)\left(3x-1\right)+\left(2x+1\right)^2+\left(3x-1\right)^2\)

\(=\left(2x+1+3x-1\right)^2=\left(5x\right)^2=25x^2\)

3. \(\left(x-y+z\right)^2+\left(z-y\right)^2+2\left(x-y+z\right)\left(y-z\right)\)

\(=\left(x-y+z+y-z\right)^2=x^2\)

4. \(\left(x-3\right)\left(x+3\right)-\left(x-3\right)^2\)

\(=\left(x-3\right)\left(x+3-x+3\right)=6\left(x-3\right)\)

5. \(\left(x^2-1\right)\left(x+2\right)-\left(x-2\right)\left(x^2+2x+4\right)\)

\(=x^3+2x^2-x-2-x^3+y^3=2x^2-x-2+y^3\)

6. Áp dụng các hằng đẳng thức đáng nhớ

18 tháng 5 2017

(2x + y)(4x2 – 2xy + y2) – (2x – y)(4x2 + 2xy + y2)

= (2x + y)[(2x)2 – 2x.y + y2] – (2x – y)[(2x)2 + 2x.y + y2]

= [(2x)3 + y3] – [(2x)3 – y3]

= (2x)3 + y3 – (2x)3 + y3

= 2y3

1: Ta có: \(\left(x+3\right)\left(x^2-3x+9\right)-\left(x^3+54\right)\)

\(=x^3+27-x^3-54\)

=-27

2: Ta có: \(\left(2x+y\right)\left(4x^2-2xy+y^2\right)-\left(2x-y\right)\left(4x^2+2xy+y^2\right)\)

\(=8x^3+y^3-8x^3+y^3\)

\(=2y^3\)

18 tháng 9 2021

\(1,=x^3+270-x^3-54=-27\\ 2,=8x^3+y^3-8x^3+y^3=2y^3\\ 3,=x^3-3x^2+3x-1-x^3-8+3x^2-48=3x-57\\ 4,=x^3-x-x^3-1=-x-1\\ 5,=8x^3-5\left(8x^3+1\right)=-32x^3-5\\ 6,=27+x^3-27=x^3\\ 7,làm.ở.câu.3\\ 8,=x^3-6x^2+12x-8+6x^2-12x+6-x^3-1+3x\\ =3x-3\)

19 tháng 5 2016

1) theo đề bài ta có:\(\left(2^x-8\right)^3+\left(4^x+13\right)^3+\left(-4^x-2^x-5\right)^3=0\)

 Đặt 2^x-8=a;4^x+13=b; -4^x-2^x-5=c

=> a+b+c=0=> a^3+b^3+c^3=3abc=0

=> 3(2^x-8)(4^x+13)(-4^x-2^x-5)=0

=> 2^x-8=0;4^x+13=0;-4^x-2^x-5=0

tìm được x=3

2)ta có\(x^2-2xy+2y^2-2x+6y+5=0\)

<=>\(\left(x^2+y^2+1-2xy-2x+2y\right)+\left(y^2+4y+4\right)=0\)

<=>\(\left(x-y-1\right)^2+\left(y+2\right)^2=0\)

<=> (x-y-1)^2=0 và (y+2)^2=0

=> x=-1;y=-2