Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.
Lời giải:
Vì $|y|\geq 0$ với mọi $y$ nên:
$(x+3)(1-x)=|y|\geq 0$. Khi đó sẽ có 2 TH xảy ra:
TH1: $x+3\geq 0; 1-x\geq 0$
$\Rightarrow 1\geq x\geq -3$
Mà $x$ nguyên nên $x\in \left\{1; 0; -1; -2; -3\right\}$
Nếu $x=1$ thì: $|y|=0\Rightarrow y=0$
Nếu $x=0$ thì $|y|=3\Rightarrow y=\pm 3$
Nếu $x=-1$ thì $|y|=4\Rightarrow y=\pm 4$
Nếu $x=-2$ thì $|y|=3\Rightarrow y=\pm 3$
Nếu $x=-3$ thì $|y|=0\Rightarrow y=0$
TH2: $x+3\leq 0; 1-x\leq 0\Rightarrow x\geq 1$ và $x\leq -3$ (vô lý) - loại.
Bài 1:
Để E nguyên thì \(x+5⋮x-2\)
\(\Leftrightarrow x-2\in\left\{1;-1;7;-7\right\}\)
hay \(x\in\left\{3;1;9;-5\right\}\)
a) \(2^x=8\)
⇔ \(2^x=2^3\)
⇒ \(x=3\)
b) \(3^x=27\)
⇔ \(3^x=3^3\)
⇒ \(x=3\)
c) \(\left(-\dfrac{1}{2}\right)x=\left(-\dfrac{1}{2}\right)^4\)
⇔ \(x=\left(-\dfrac{1}{2}\right)^4\div\left(-\dfrac{1}{2}\right)\)
⇔ \(x=\left(-\dfrac{1}{2}\right)^3\)
d) \(x\div\left(-\dfrac{3}{4}\right)=\left(-\dfrac{3}{4}\right)^2\)
⇔ \(x=\left(-\dfrac{3}{4}\right)^2\cdot\left(-\dfrac{3}{4}\right)\)
⇔ \(x=\left(-\dfrac{3}{4}\right)^3=-\dfrac{27}{64}\)
d) \(\left(x+1\right)^3=-125\)
⇔ \(\left(x+1\right)^3=\left(-5\right)^3\)
⇔ \(x+1=-5\)
⇔ \(x=-5-1=-6\)
2:
a: (x-1,2)^2=4
=>x-1,2=2 hoặc x-1,2=-2
=>x=3,2(loại) hoặc x=-0,8(loại)
b: (x-1,5)^2=9
=>x-1,5=3 hoặc x-1,5=-3
=>x=-1,5(loại) hoặc x=4,5(loại)
c: (x-2)^3=64
=>(x-2)^3=4^3
=>x-2=4
=>x=6(nhận)
ĐKXĐ: x<>0; y<>0
2/x+1/y=3
=>\(\dfrac{2y+x}{xy}=3\)
=>x+3y=3xy
=>x-3xy+3y=0
=>x(1-3y)+3y-1=-1
=>-x(3y-1)+(3y-1)=-1
=>(3y-1)(x-1)=1
=>(x-1;3y-1) thuộc {(1;1); (-1;-1)}
\(\Leftrightarrow\left(x,y\right)\in\left\{\left(2;\dfrac{2}{3}\right);\left(0;0\right)\right\}\)
Cả hai cặp này đều không thỏa mãn điều kiện x,y nguyên và x,y khác0
Do đó: Không có cặp số nguyên x,y nào thỏa mãn yêu cầu đề bài
a,x.y=3=1x3=3x1=-1x(-3)=-3x(-1).
Vậy (x,y)=(1,3)=(3,1)=(-1,-3)=(-3,-1)
b,x.(y+1)=5=1x5=5x1=-1x(-5)=-5x(-1)
=>
x | 1 | 5 | -1 | -5 |
y+1 | 5 | 1 | -5 | -1 |
y | 4 | 0 | -6 | -2 |
Vậy (x,y)=(1,4)=(5,0)=(-1,-6)=(-1,-2).
c,(x-2)(y+3)=7=1x7=7x1=-1x(-7)=-7(-1)
=>
x-2 | 1 | 7 | -1 | -7 |
y+3 | 7 | 1 | -7 | -1 |
x | 3 | 9 | 1 | -5 |
y | 4 | -2 | -10 | -4 |
Vậy (x,y)=(3,4)=(9,-2)=(1,-10)=(-5,-4).
\(3-\frac{x}{2}=\frac{1}{y}\)
\(\Rightarrow\frac{6-x}{2}=\frac{1}{y}\Rightarrow\left(6-x\right)y=2\)
Ta thấy 2 = 1.2 ; 2.1; -1.-2 ; -2.-1
6 - x | 1 | -1 | 2 | -2 |
x | 5 | 7 | 4 | 8 |
y | 2 | -2 | 1 | -1 |
\(\frac{3-x}{2}=\frac{1}{y}\)
\(\Rightarrow2=y\left(3-x\right)\)
mà ta thấy :\(2=1.2=2.1=\left(-1\right)\left(-2\right)=\left(-2\right)\left(-1\right)\)
Ta có bảng:
y | 1 | 2 | -1 | -2 |
x-3 | 2 | 1 | -2 | -1 |
x | 5 | 4 | 1 | 2 |
\(\dfrac{1}{x}+\dfrac{1}{y}=\dfrac{1}{3}\)=>\(\dfrac{x+y}{xy}=\dfrac{1}{3}\)
=>3(x+y)=xy
=>3x+3y=xy
=>3x=xy-3y
=>3x=y(x-3)
=>y=\(\dfrac{3x}{x-3}\)
* Vì y nguyên nên 3x ⋮ x-3
=>3(x-3)+9 ⋮x-3
=>9 ⋮ x-3
=>x-3∈Ư(9)
=>x-3∈{1;-1;3;-3;9;-9}
=>x∈{4;2;6;0;12;-6} mà x nguyên dương và x khác 0 nên x∈{4;2;6;12}
=>y∈{12;-6;6;4} mà y nguyên dương nên y∈{12;6;4}
=>x∈{4;6;12}
- Vậy x=4 thì y=12 ; x=6 thì y=6 ; x=12 thì y=4.
f)
\(A=\sqrt{\frac{\left(x+1\right)}{x-3}}=\sqrt{1+\frac{4}{x-3}}\)
x-3={-4)=> x=-1