K
Khách
Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.
Các câu hỏi dưới đây có thể giống với câu hỏi trên
TN
Tìm các số nguyên x,y,z thỏa mãn các điều kiện sau:
x2=y-1
y2=z-1
z2=x-1
Mình cần gấp!!!Giúp với!!!!!!!!
0
DT
0
DN
0
ND
0
N
0
NN
1
23 tháng 12 2016
Bạn tham khảo ở đây nhé
Câu hỏi của Nguyễn Quang Đức - Toán lớp 6 - Học toán với OnlineMath
Lời giải:
Ta có: \(\left\{\begin{matrix} x^2=y-1\\ y^2=z-1\\ z^2=x-1\end{matrix}\right.\)\(\Rightarrow \left\{\begin{matrix} x^2-y^2=y-z\\ y^2-z^2=z-x\\ z^2-x^2=x-y\end{matrix}\right.\)
\(\Rightarrow (x^2-y^2)(y^2-z^2)(z^2-x^2)=(x-y)(y-z)(z-x)\)
\(\Leftrightarrow (x-y)(y-z)(z-x)[(x+y)(y+z)(z+x)-1]=0\)
Giả sử 2 trong 3 số \(x,y,z\) bằng nhau \((x=y)\)
Thay vào PT 1: \(x^2=y-1=x-1\Leftrightarrow x^2-x+1=0\)
\(\Leftrightarrow (x-\frac{1}{2})^2+\frac{3}{4}=0\) (vô lý)
Do đó \(x\neq y\neq z\)
\(\Leftrightarrow (x-y)(y-z)(z-x)\neq 0\)
Suy ra \((x+y)(y+z)(z+x)=1\) (1)
Vì \(x,y,z\in\mathbb{Z}\Rightarrow x+y,y+z,z+x\in\mathbb{Z}\) (2)
Từ (1),(2) suy ra \(x+y,y+z,z+x\in \left\{-1;1\right\}\)
Vì chỉ có 2 giá trị mà có 3 số nên tồn tại 2 số có cùng giá trị 1 hoặc -1
Giả sử \(x+y=y+z\Rightarrow x=z\) (vô lý vì \(x\neq y\neq z\) )
Vậy không tồn tại bộ 3 số nguyên x,y,z thỏa mãn.