Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.
a/ Ta có VP là số lẻ nên VT cũng phải là số lẻ. Hay trong 2 số x, y phải có 1 số lẻ.
Giả sử số lẻ đó là x thì ta có
\(\hept{\begin{cases}x=2m+1\\y=2n\end{cases}}\)
\(\Rightarrow\left(2m+1\right)^2+\left(2n\right)^2=1999\)
\(\Leftrightarrow4\left(m^2+m+n\right)=1998\)
Ta thấy VT chia hết chi 4 còn VP không chia hết cho 4 nên phương trình vô nghiệm
b/ \(9x^2+2=y^2+y\)
\(\Leftrightarrow36x^2+8=4y^2+4y\)
\(\Leftrightarrow\left(2y+1\right)^2-36x^2=9\)
\(\Leftrightarrow\left(2y+1-6x\right)\left(2y+1+6x\right)=9\)
1) Giả sử: \(9x+5=n\left(n+1\right)\left(n\in Z\right)\)
\(36x+20-4n^2+4n\)
\(\Rightarrow36x+21=4n^2+4n+1\)
\(\Rightarrow3\left(12x+7\right)=\left(2n+1\right)^2\)
\(\left(2n+1\right)^2\)là số chính phương nên sẽ chia hết cho 3 => (2n+1)2 chia hết cho 9
Lại có: 12x+7 ko chia hết cho 3 => 3(12x+7) ko chia hết cho 9
Chứng tỏ không tồn tại số nguyên x nào để 9x+5=n(n+1)
y=1 thì thấy vô lý.
Nên x = y /y − 1 ∈ Z
⇒ y⋮(y − 1)
⇒ y = 0 với y − 1 = ±1
(x, y) ∈ {(0, 0),(2, 2)}
thấy đúng thì k nha
Ta có: x+y=xy \(\Rightarrow\) -xy+x+y = 0 \(\Rightarrow\) -xy+x+y-1 = -1
\(\Rightarrow\) (-xy+x)+(y-1) = -1
-x(y-1)+(y-1) = -1
(-x+1)(y-1) = -1 hay (1-x)(y-1) = -1
\(\Rightarrow\) 1-x = -1 và y-1 = 1
1-x = 1 và y-1 = -1
Vậy có 2 cặp (x;y) thỏa mãn là x=2 và y=2
hay x=0 và y=0
x+y=6-2
x+y=4
suy ra có 5 trường hợp
x=0,y=4
x=1,y=3
x=2,y=2
x=3,y=1
x=4,y=0