Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.
1, Có (x-2)2\(\ge\)0
(y-2)2\(\ge\)0
=>(x-2)2.(y-3)2\(\ge\)0
Mà (x-2)2.(y-3)2=-4
Vậy không có x, y thỏa mãn
Có 111...1=11.1010...01
Vậy số 111...1(2002 số 1) sẽ chia hết cho 11 nên nó sẽ là hợp sô
(phần này hơi sơ sài nên có cái gì phải hỏi luôn
Ta có:\(\left(x-2\right)^2.\left(y-3\right)^2=-4\)
\(\Rightarrow\left[\left(x-2\right).\left(y-3\right)\right]^2=-4\)
Lại có:\(VP< 0\) mà \(VT\ge0\)
nên ko có x,y thỏa mãn
\(\Leftrightarrow-\dfrac{3}{4}< =x< =\dfrac{1}{2}\)
hay x=0
\(\left(x-2\right)^2.\left(y-3\right)^2=-4\)
\(\Rightarrow\) Phải có ít nhât 1 số âm
Mà \(\hept{\begin{cases}\left(x-2\right)^2\ge0\\\left(y-3\right)^2\ge0\end{cases}}\Leftrightarrow x,y\in\left\{\varnothing\right\}\)
a) \(\frac{1}{x}+\frac{1}{y}=\frac{1}{2}+\frac{1}{2.x.y}\)
\(\Leftrightarrow\frac{x+y}{xy}=\frac{xy+1}{2xy}\Leftrightarrow\frac{2x+2y}{2xy}=\frac{xy+1}{2xy}\)
\(\Leftrightarrow2x+2y=xy+1\Leftrightarrow2x-xy+2y-1=0\)
\(\Leftrightarrow x\left(2-y\right)-2\left(2-y\right)=-3\Leftrightarrow\left(2-y\right)\left(x-1\right)=-3\)
Vì x, t nguyên nên 2 - y và x - 1 cũng nguyên. Vậy thì chúng phải là ước của -3.
Ta có bảng:
x-1 | -3 | -1 | 1 | 3 |
x | -2 | 0 | 2 | 4 |
2-y | 1 | 3 | -3 | -1 |
y | 1 | -2 | 5 | 3 |
Vậy ta có các cặp số (x ; y) thỏa mãn là: (-2;1) , (0; -2) , (2 ; 5) , (4 ; 3).
b) Do x, y nguyên nên (x -1)2 và y + 1 đều là ước của -4.
Ta có bảng:
(x-1)2 | 1 | 2 | 4 |
x | 0 hoặc 2 | \(\orbr{\begin{cases}x=\sqrt{2}+1\\x=1-\sqrt{2}\end{cases}}\left(l\right)\) | -1 hoặc 3 |
y + 1 | -4 | -1 | |
y | -3 | -2 |
Vậy ta có các cặp số (x ; y) thỏa mãn là: (0; -3) , (2; -3) , (-1; -2) (3 ; -2).
d) Ta có: \(n^2+5n+9⋮n+3\)
\(\Leftrightarrow n^2+3n+2n+6+3⋮n+3\)
\(\Leftrightarrow n\left(n+3\right)+2\left(n+3\right)+3⋮n+3\)
mà \(n\left(n+3\right)+2\left(n+3\right)⋮n+3\)
nên \(3⋮n+3\)
\(\Leftrightarrow n+3\inƯ\left(3\right)\)
\(\Leftrightarrow n+3\in\left\{1;-1;3;-3\right\}\)
hay \(n\in\left\{-2;-4;0;-6\right\}\)
Vậy: \(n\in\left\{-2;-4;0;-6\right\}\)
d) Ta có: n2+5n+9⋮n+3n2+5n+9⋮n+3
⇔n2+3n+2n+6+3⋮n+3⇔n2+3n+2n+6+3⋮n+3
⇔n(n+3)+2(n+3)+3⋮n+3⇔n(n+3)+2(n+3)+3⋮n+3
mà n(n+3)+2(n+3)⋮n+3n(n+3)+2(n+3)⋮n+3
nên 3⋮n+33⋮n+3
⇔n+3∈Ư(3)⇔n+3∈Ư(3)
⇔n+3∈{1;−1;3;−3}