Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.
1) Giả sử: \(9x+5=n\left(n+1\right)\left(n\in Z\right)\)
\(36x+20-4n^2+4n\)
\(\Rightarrow36x+21=4n^2+4n+1\)
\(\Rightarrow3\left(12x+7\right)=\left(2n+1\right)^2\)
\(\left(2n+1\right)^2\)là số chính phương nên sẽ chia hết cho 3 => (2n+1)2 chia hết cho 9
Lại có: 12x+7 ko chia hết cho 3 => 3(12x+7) ko chia hết cho 9
Chứng tỏ không tồn tại số nguyên x nào để 9x+5=n(n+1)
x2-2y2=1=>x2-1=2y2
=>(x-1)(x+1)=2y2=y.2y
+)(x-1)(x+1)=2y2
=>x-1=2 và x+1=y2
=>x=3=>y2=4=>y=2
+)(x-1)(x+1)=y.2y
=>x-1=y và x+1=2y
=>x=y+1 và x+1=2y
=>x+1=(y+1)+1=y+2=2y=>2y-y=2=>y=2
=>x=y+1=3
vậy (x;y)=(3;2)
p2-2q2=1
=>p2=2q+1(1)
Vì p2=2q+1 =>p là số lẻ=> p=2k+1=>p2=4k2+4k+1(2)
Từ 1 và 2 => 4k2+4k+1=2q+1
=>2(2k2+2k)=2q
=>2k2+2k=q=> q là số chẵn Mà q là số nguyên tố => q=2
Thay q = 2 vào đề bài => p=3
Câu hỏi của FFPUBGAOVCFLOL - Toán lớp 7 - Học toán với OnlineMath
Bạn tham khảo nhé
- Vì p > q > r nên : p^2 + q^2 > 2
Do vậy p^2 + q^2 + r^2 là số nguyên tố thì p^2 + q^2 + r^2 phải là số lẻ .
=> p^2 ; q^2 ; r^2 là các số lẻ
=> p ; q ; r là các số nguyên tố lẻ
- Trong 3 số p , q , r phải có ít nhất 1 số chia hết cho 3 vì nếu không có số nào chia hết cho 3 thì p^2 , q^2 , r^2 chia 3 đều dư 1, khi đó p^2 + q^2 + r^2 chia hết cho 3 ( mâu thuẫn)
=> p = 3 ( p là số ngyen tố lẻ nhỏ nhất trong 3 số )
= > q = 5 , r = 7
giải
- Vì p > q > r nên : p^2 + q^2 > 2
Do vậy p^2 + q^2 + r^2 là số nguyên tố thì p^2 + q^2 + r^2 phải là số lẻ .
=> p^2 ; q^2 ; r^2 là các số lẻ
=> p ; q ; r là các số nguyên tố lẻ
- Trong 3 số p , q , r phải có ít nhất 1 số chia hết cho 3 vì nếu không có số nào chia hết cho 3 thì p^2 , q^2 , r^2 chia 3 đều dư 1, khi đó p^2 + q^2 + r^2 chia hết cho 3 ( mâu thuẫn)
=> p = 3 ( p là số ngyen tố lẻ nhỏ nhất trong 3 số )
= > q = 5 , r = 7
bổ đề: " Một số chính phương a^2 khi chia cho 5 chỉ có thể dư 0; 1 hoặc 4 "
Chứng minh: Ta xét 5 trường hợp:
+ a = 5k => a^2 = 25k^2, chia 5 dư 0
+ a = 5k + 1 => a^2 = (5k + 1)^2 = 25k^2 + 10k + 1, chia 5 dư 1
+ a = 5k + 2 => a^2 = (5k + 2)^2 = 25k^2 + 20k + 4, chia 5 dư 4
+ a = 5k + 3 => a^2 = (5k + 3)^2 = 25k^2 + 30k + 9, chia 5 dư 4
+ a = 5k + 4 => a^2 = 25k^2 + 40k + 16, chia 5 dư 1
Vậy bổ đề được chứng minh
Trở lại bài toán: Ta có (5^(2p)) + 1997 chia 5 dư 2
(5^(2p^2)) + q^2 chia 5 dư q^2, áp dụng bổ đề ta được q^2 chia 5 chỉ có thể dư 0, 1 hoặc 4 chứ không thể dư 2 => 2 số (5^(2p))+1997 và (5^(2p^2))+q^2 khi chia cho 5 không bao giờ có cùng số dư, vậy nên chúng không thể bằng nhau
=> không tồn tại 2 số nguyên tố p và q thỏa mãn yêu cầu bài toán
chắc vậy
bổ đề: " Một số chính phương a^2 khi chia cho 5 chỉ có thể dư 0; 1 hoặc 4 "
Chứng minh: Ta xét 5 trường hợp:
+ a = 5k => a^2 = 25k^2, chia 5 dư 0
+ a = 5k + 1 => a^2 = (5k + 1)^2 = 25k^2 + 10k + 1, chia 5 dư 1
+ a = 5k + 2 => a^2 = (5k + 2)^2 = 25k^2 + 20k + 4, chia 5 dư 4
+ a = 5k + 3 => a^2 = (5k + 3)^2 = 25k^2 + 30k + 9, chia 5 dư 4
+ a = 5k + 4 => a^2 = 25k^2 + 40k + 16, chia 5 dư 1
Vậy bổ đề được chứng minh
Trở lại bài toán: Ta có (5^(2p)) + 1997 chia 5 dư 2
(5^(2p^2)) + q^2 chia 5 dư q^2, áp dụng bổ đề ta được q^2 chia 5 chỉ có thể dư 0, 1 hoặc 4 chứ không thể dư 2 => 2 số (5^(2p))+1997 và (5^(2p^2))+q^2 khi chia cho 5 không bao giờ có cùng số dư, vậy nên chúng không thể bằng nhau
=> không tồn tại 2 số nguyên tố p và q thỏa mãn yêu cầu bài toán
Số chính phương chia 5 chỉ dư 1 và 4 (bạn tự CM)
Ta dễ dàng thấy 5^2p + 2013 chia 5 dư 3 \Rightarrow vế trái chia 5 dư 3 (1)
Từ bổ đề ta có q^2 chia 5 dư 1 hoặc 4 mà 5^2p^2 chia hết cho 5 nên vế phải chia 5 dư 1 hoặc 4 (2)
Từ (1) và (2) giải ra ta thấy sự mâu thuẫn
Vậy không có p q nguyên tố thoả mãn đề bài
Ta có :
\(5^{2p}=25^p\equiv1\left(mod3\right)\)
\(2013\equiv0\left(mod3\right)\)
\(\Rightarrow5^{2p}+2013\equiv1\left(mod3\right)\)\(\left(1\right)\)
Mà :
\(\left(5^{2p}\right)^2\equiv1\left(mod3\right)\)do \(5^{2p}\equiv1\left(mod3\right)\)
\(q^2\equiv1\left(mod3\right)\)(vì \(q\)là SNT nên \(q\)không chia hết cho 3 và \(q^2\)là số chính phương nên chia 3 chỉ có thể dư 1 hoặc 0)
\(\Rightarrow\left(5^{2p}\right)^2+q^2\equiv2\left(mod3\right)\)\(\left(2\right)\)
Mà : \(5^{2p}+2013=\left(5^{2p}\right)^2+q^2\)\(\left(3\right)\)
Từ \(\left(1\right);\left(2\right);\left(3\right)\)\(\Rightarrow p\in\varnothing;q\in\varnothing\)
Vậy \(\Rightarrow p\in\varnothing;q\in\varnothing\)
p2 = 1 + 6q2
⇒ p là số lẻ
Đặt p = 2k + 1
⇒ p2 = 4k2 + 4k + 1
⇒ 4k2 + 4k = 6q2
⇒ 2k2 + 2k = 3q2
⇒ 3q2 là số chẵn mà 3 là số lẻ
⇒ q2 là chẵn => q là chẵn => q là 2
⇒ p = \(\sqrt{1+6\cdot2^2}\) = 5