Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.
+ x+y=2 ta có bảng
x | 0 | 1 | 2 |
y | 2 | 1 | 0 |
+khi x=0, y=2 ta có BPT 04 + 24 >= 2
+ khi x= 1, y=1 ta có BPT 14 + 14 >=2
+ khi x = 2, y=0 ta có BPT 24 + 04 >=2
Nên x4 + y4 >=2
Lời giải:
$x^2-3xy+y^2\vdots 25(1)$
$\Rightarrow x^2-3xy+y^2\vdots 5$
$\Leftrightarrow (x+y)^2-5xy\vdots 5$
$\Leftrightarrow (x+y)^2\vdots 5$
$\Rightarrow x+y\vdots 5$
$\Rightarrow (x+y)^2\vdots 25$
$\Leftrightarrow x^2+2xy+y^2\vdots 25(2)$
Từ $(1);(2)\Rightarrow 5xy\vdots 25$
$\Rightarrow xy\vdots 5$
Do đó $x$ hoặc $y$ chia hết cho $5$
Không mất tổng quát giả sử $x\vdots 5$
Do $x^2-3xy+y^2\vdots 25\vdots 5$ nên $y^2\vdots 5$
$\Rightarrow y\vdots 5$
$\Rightarrow xy\vdots 25$
Ta có đpcm.
\(\left(x-y\right)^2+2xy⋮4\)
\(\Rightarrow x^2-2xy+y^2+2xy⋮4\)
\(\Rightarrow x^2+y^2⋮4\)
\(\Rightarrow x^2⋮4;y^2⋮4\)
mà \(4⋮2\)
\(\Rightarrow x^2⋮2;y^2⋮2\Rightarrow x⋮2;y⋮2\)
\(\Rightarrow dpcm\)
Bài làm của bạn Trí từ chỗ \(x^2+y^2⋮4\Rightarrow x^2,y^2⋮4\) thì bạn còn phải xét thêm trường hợp \(x,y\) cùng lẻ nữa. Vì số chính phương khi chia cho 4 chỉ có thể dư 0 hoặc 1 nên nếu \(x,y\) lẻ thì \(x^2+y^2\) chia 4 dư 2, không thỏa mãn. Vậy mới suy ra được \(x^2,y^2⋮4\). Còn lại bạn đúng hết rồi.