Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.
a)Ta có:\(\frac{n+3}{n-2}=\frac{n-2+5}{n-2}=\frac{n-2}{n-2}+\frac{5}{n-2}=1+\frac{5}{n-2}\)
=> Để \(1+\frac{5}{n-2}\) là số nguyên âm
=>\(\frac{5}{n-2}\) là số âm và \(\frac{5}{n-2}>-1\)
\(\Rightarrow n-2=-5\)
\(\Rightarrow n=-5-2\)
\(\Rightarrow n=-3\)
a: Để A nguyên thì \(2n+1\inƯ\left(10\right)\)
mà n nguyên
nên \(2n+1\in\left\{1;-1;5;-5\right\}\)
=>\(n\in\left\{0;-1;2;-3\right\}\)
b: B nguyên thì 3n+5-5 chia hết cho 3n+5
=>\(3n+5\inƯ\left(-5\right)\)
mà n nguyên
nên \(3n+5\in\left\{-1;5\right\}\)
=>n=-2 hoặc n=0
c: Để C nguyên thì 4n-6+16 chia hết cho 2n-3
=>\(2n-3\in\left\{1;-1\right\}\)
=>\(n\in\left\{2;1\right\}\)
Bài 10:
a: 2x-3 là bội của x+1
=>\(2x-3⋮x+1\)
=>\(2x+2-5⋮x+1\)
=>\(-5⋮x+1\)
=>\(x+1\in\left\{1;-1;5;-5\right\}\)
=>\(x\in\left\{0;-2;4;-6\right\}\)
b: x-2 là ước của 3x-2
=>\(3x-2⋮x-2\)
=>\(3x-6+4⋮x-2\)
=>\(4⋮x-2\)
=>\(x-2\inƯ\left(4\right)\)
=>\(x-2\in\left\{1;-1;2;-2;4;-4\right\}\)
=>\(x\in\left\{3;1;4;0;6;-2\right\}\)
Bài 14:
a: \(4n-5⋮2n-1\)
=>\(4n-2-3⋮2n-1\)
=>\(-3⋮2n-1\)
=>\(2n-1\inƯ\left(-3\right)\)
=>\(2n-1\in\left\{1;-1;3;-3\right\}\)
=>\(2n\in\left\{2;0;4;-2\right\}\)
=>\(n\in\left\{1;0;2;-1\right\}\)
mà n>=0
nên \(n\in\left\{1;0;2\right\}\)
b: \(n^2+3n+1⋮n+1\)
=>\(n^2+n+2n+2-1⋮n+1\)
=>\(n\left(n+1\right)+2\left(n+1\right)-1⋮n+1\)
=>\(-1⋮n+1\)
=>\(n+1\in\left\{1;-1\right\}\)
=>\(n\in\left\{0;-2\right\}\)
mà n là số tự nhiên
nên n=0
a: \(\left\{{}\begin{matrix}2n+3⋮d\\3n+5⋮d\end{matrix}\right.\Leftrightarrow\left\{{}\begin{matrix}6n+9⋮d\\6n+10⋮d\end{matrix}\right.\Leftrightarrow d=1\)
Vậy: 2n+3 và 3n+5 là hai số nguyên tố cùng nhau
a)nếu 2n+1 và 3n+2 là các số nguyên tố cùng nhau thì chúng phải có ƯCLN =1
giả sử ƯCLN(2n+1,3n+2)=d
=>2n+1 chia hết cho d , 3n+2 chia hết cho d
=>3(2n+1)chia hết cho d , 2(3n+2)chia hết cho d
=>6n+3 chia hết cho d, 6n +4 chia hết cho d
=>(6n+4) - (6n+3) chia hết cho d
=>6n+4-6n-3=1 chia hết cho d
=>d=1
vậy ƯCLN(2n+1,3n+2)=1 (đpcm)
đpcm là điều phải chứng minh
Mình mẫu đầu với cuối nhé:
a) Đặt \(ƯCLN\left(3n+4,3n+7\right)=d\)
\(\Rightarrow\left\{{}\begin{matrix}3n+4⋮d\\3n+7⋮d\end{matrix}\right.\)
\(\Rightarrow\left(3n+7\right)-\left(3n+4\right)⋮d\)
\(\Rightarrow3⋮d\)
\(\Rightarrow d\in\left\{1,3\right\}\)
Nhưng do \(3n+4,3n+7⋮̸3\) nên \(d\ne3\Rightarrow d=1\)
Vậy \(ƯCLN\left(3n+4,3n+7\right)=1\) hay \(3n+4,3n+7\) nguyên tố cùng nhau.
e) \(ƯCLN\left(2n+3,3n+5\right)=d\)
\(\Rightarrow\left\{{}\begin{matrix}2n+3⋮d\\3n+5⋮d\end{matrix}\right.\)
\(\Rightarrow\left\{{}\begin{matrix}6n+9⋮d\\6n+10⋮d\end{matrix}\right.\)
\(\Rightarrow\left(6n+10\right)-\left(6n+9\right)⋮d\)
\(\Rightarrow1⋮d\) \(\Rightarrow d=1\)
Vậy \(ƯCLN\left(2n+3,3n+5\right)=1\), ta có đpcm.
a: Để A là số tự nhiên thì \(\left\{{}\begin{matrix}3n+5⋮2n+1\\n\ge-\dfrac{1}{2}\end{matrix}\right.\Leftrightarrow\left\{{}\begin{matrix}6n+3+7⋮2n+1\\n\ge-\dfrac{1}{2}\end{matrix}\right.\)
\(\Leftrightarrow\left\{{}\begin{matrix}2n+1\in\left\{1;-1;7;-7\right\}\\n\ge-\dfrac{1}{2}\end{matrix}\right.\Leftrightarrow n\in\left\{0;3\right\}\)
b: Để B là số nguyên âm thì \(\left\{{}\begin{matrix}4n+1\inƯ\left(10\right)\\n< =-\dfrac{1}{4}\end{matrix}\right.\Leftrightarrow\left\{{}\begin{matrix}4n+1\in\left\{1;-1;5;-5\right\}\\n< =-\dfrac{1}{4}\end{matrix}\right.\)
\(\Leftrightarrow n=-\dfrac{3}{2}\)
Câu a thiếu TH n = -4 nữa á bạn