Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.
\(a,3n-1\inƯ\left(12\right)=\left\{\pm1;\pm2;\pm3;\pm4;\pm6;\pm12\right\}\)
3n-1 | 1 | -1 | 2 | -2 | 3 | -3 | 4 | -4 | 6 | -6 | 12 | -12 |
n | loại | 0 | 1 | loại | loại | loại | loại | -1 | loại | loại | loại | loại |
c, \(\dfrac{2\left(n-3\right)+9}{n-3}=2+\dfrac{9}{n-3}\Rightarrow n-3\inƯ\left(9\right)=\left\{\pm1;\pm3;\pm9\right\}\)
n-3 | 1 | -1 | 3 | -3 | 9 | -9 |
n | 4 | 2 | 6 | 0 | 12 | -6 |
-bạn tự lập bảng nhé
a, \(3n-1\inƯ\left(12\right)=\left\{\pm1;\pm2;\pm3;\pm4;\pm6;\pm12\right\}\)
b, \(\dfrac{2\left(n-3\right)+11}{n-3}=2+\dfrac{11}{n-3}\Rightarrow n-3\inƯ\left(11\right)=\left\{\pm1;\pm11\right\}\)
n-3 | 1 | -1 | 11 | -11 |
n | 4 | 2 | 14 | -8 |
c, \(\dfrac{3n}{n+2}=\dfrac{3\left(n+2\right)-6}{n+2}=3-\dfrac{6}{n+2}\Rightarrow n+2\inƯ\left(6\right)=\left\{\pm1;\pm2;\pm3;\pm6\right\}\)
a) ĐKXĐ: \(n\ne3\)
Để phân số \(A=\dfrac{n-5}{n-3}\) là số nguyên thì \(n-5⋮n-3\)
\(\Leftrightarrow n-3-2⋮n-3\)
mà \(n-3⋮n-3\)
nên \(-2⋮n-3\)
\(\Leftrightarrow n-3\inƯ\left(-2\right)\)
\(\Leftrightarrow n-3\in\left\{1;-1;2;-2\right\}\)
hay \(n\in\left\{4;2;5;1\right\}\)
Vậy: \(n\in\left\{4;2;5;1\right\}\)
Để phân số trên thỏa mãn điều kiện thì:
3n+4 chia hết cho n-1
3n+4=3n-3+7
=3.(n-1)+7
Vì 3.(n-1) chia hết cho n-1 nên 7 phải chia hết cho n-1
n-1 thuộc +-1;+-7
Thử các trường hợp ra,ta có:
n thuộc:0;2;8;-6.
a)ĐKXĐ:n \(\ne\)1
\(\frac{3n+4}{n-1}=\frac{3n-3+7}{n-1}=3+\frac{7}{n-1}\)
=>n-1 thuộc Ư(7)={1;-1;7;-7}
=>n ={2;0;8-6}
a, Đặt A = \(\frac{6n-4}{2n-5}\)
Để A là số nguyên :
\(6n-4⋮2n-5\Leftrightarrow3\left(2n-5\right)+11⋮2n-5\)
\(\Leftrightarrow11⋮2n-5\Rightarrow2n-5\inƯ\left(11\right)=\left\{\pm1;\pm11\right\}\)
2n - 5 | 1 | -1 | 11 | -11 |
2n | 6 | 4 | 16 | -6 |
n | 3 | 2 | 8 | -3 |
tương tự với b ; c nhé
=>\(\frac{6n-2-1}{3n-1}\)=>\(\frac{2\left(3n-1\right)-1}{3n-1}\)=2\(\frac{1}{3n-1}\)
=>để (6n-1)/(3n-1) nguyên thì 1/3n-1 nguyên
=>1 chia hết cho 3n-1
=>3n-1 thuộc 1,-1
ta có : 6n-3 / 3n+1
= 6n+2-5 / 3n+1
= 6n+2 / 3n+1 - 5/3n+1
= 2 - 5/3n+1
Vì 2 là số nguyên nên để 6n-3/3n+1 là số nguyên thì 5/3n+1 phải là số nguyên
Để 5/3n+1 là số nguyên thì 5 chia hết cho 3n+1
=> 3n + 1 thuộc Ư(5)
mà Ư(5) = { -1 ; 1 ; -5 ; 5 }
=> 3n+1 thuộc { -1 ; 1 ; -5 ; 5 }
=> 3n thuộc { -2 ; 0 ; -6 ; 4 }
vì 3n chia hết cho 3 với mọi số nguyên n
=> 3n thuộc { 0 ; -6 }
=> n thuộc { 0 ; -2 }
ta có bảng sau
n | 0 | -2 |
6n-3 | -3 | -15 |
3n+1 | 1 | -5 |
6n3/3n+1 | -3/1=-3 thuộc Z ( thỏa mãn | -15/-5=3 thuộc Z ( thỏa mãn ) |
Vậy tập hợp giá trị n thỏa mãn là { 0 ; -2 }
a: Để A nguyên thì \(n-1\in\left\{1;-1;3;-3\right\}\)
hay \(n\in\left\{2;0;4;-2\right\}\)
b: Để B nguyên thì \(3n+1\in\left\{1;4\right\}\)
hay \(n\in\left\{0;1\right\}\)
c: Để C nguyên thì \(n+3⋮2n-1\)
\(\Leftrightarrow2n+6⋮2n-1\)
\(\Leftrightarrow2n-1\in\left\{1;-1;7;-7\right\}\)
hay \(n\in\left\{1;0;4;-3\right\}\)
A=\(\frac{3n+4}{n-1}\)=\(\frac{3\left(n-1\right)+7}{n-1}\)=3+\(\frac{7}{n-1}\)
Để A nghuyên thì \(\frac{7}{n-1}\)nguyên => n-1 \(\in\)ƯC(7)=\(\left\{1;-1;7;-7\right\}\)
=>n\(\in\)\(\left\{2;0;8;-6\right\}\)
B=\(\frac{6n-3}{3n+1}\)=\(\frac{2\left(3n+1\right)-5}{3n+1}\)=2+\(\frac{-5}{3n+1}\)
=>3n+1\(\in\)ƯC(-5)=\(\left\{-1;1;-5;5\right\}\)
=>n\(\in\)\(\left\{0;-2\right\}\)