Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.
Cho đa thức f(x)=\(x^4+mx^3+29x^2+nx+4\) (x thuộc Z).Tìm m.n sao cho f(x) là số chính phương(m,n>=0)
Đặt \(x^4+mx^3+29x^2+nx+4=\left(x^2+ax+2\right)^2=x^4+a^2x^2+4+2ax^3+4ax^2+4ax\)
\(=x^4+2ax^3+\left(a^2+4a\right)x^2+4ax+4\)
=>a2 +4a = 29 => a+2 =+- 5 => a =3 hoặc a =-7
=>n =4a =
=> m =2a =
Lời giải:
$n^5-n=n(n^4-1)=n(n^2-1)(n^2+1)=n(n-1)(n+1)(n^2+1)$
Vì $n,n-1,n+1$ là 3 số nguyên liên tiếp nên tích của chúng chia hết cho $3$
$\Rightarrow n^5-n=n(n-1)(n+1)(n^2+1)\vdots 3$
$\Rightarrow n^5-n+2$ chia $3$ dư $2$. Do đó nó không thể là scp vì scp chia $3$ chỉ có dư $0$ hoặc $1$.
Tìm mọi số nguyên m sao cho đa thức A(x)= x^4 + 2mx^3 - 4mx + 4 (x thuộc Z) là một bình phương đúng.
Để ý hệ số cao nhất là 1, hệ số tự do là 4. Nếu A(x) phân tích được thành nhân tử thì nó có 1 trong 2 dạng sau:
Dạng 1: \(A\left(x\right)=\left(x^2+ax+2\right)^2=x^4+2ax^3+\left(a^2+4\right)x^2+4ax+4\)
Đồng nhất hệ số, ta có: \(2a=2m;\text{ }a^2+4=0;\text{ }4a=-4m\text{ (vô nghiệm)}\)
Dạng 2: \(A\left(x\right)=\left(x^2+ax-2\right)^2=x^4+2ax^3+\left(a^2-4\right)x^2-4ax+4\)
Đồng nhất hệ số: \(2a=2m;\text{ }a^2-4=0;\text{ }-4a=-4m\)
\(\Leftrightarrow a=m;\text{ }\left(a=2\text{ hoặc }a=-2\right)\)
\(\Rightarrow m=2\text{ hoặc }m=-2\)
Nếu x≥27 thì T=427(1+473+4a-27)
Do 427 chính phương nên T chính phương khi 1+473+4a-27 chính phương.
Đặt 1+473+4a-27=n2
Có n2> 4a-27 = (2a-27 )2 nên n2≥(2a-27+1)2
Suy ra 1+473+4a-27 ≥ (2a-27+1)2 = 4a-27+2a-26 +1
=> 473 ≥ 2 a-26
hay 73.2 ≥ a−26
vậy a ≤ 172
Thay a =172 có T = 427.(1+2145)2 là số chính phương.
Vậy a lớn nhất bằng 172
Lời giải:
Vì hệ số bậc cao nhất là $1$ và hệ số tự do là $4$ nên để đa thức đã cho là một số chính phương thì ta có thể viết nó dưới dạng:
\(P(x)=x^4+mx^3+29x^2+nx+4=(x^2+ax+2)^2\)
\(\Leftrightarrow x^4+mx^3+29x^2+nx+4=x^4+a^2x^2+4+2ax^3+4x^2+4ax\)
\(\Leftrightarrow x^4+mx^3+29x^2+nx+4=x^4+2ax^3+x^2(a^2+4)+4ax+4\)
Đồng nhất hệ số:
\(\Rightarrow \left\{\begin{matrix} m=2a\\ 29=a^2+4\\ n=4a\end{matrix}\right.\Rightarrow \left\{\begin{matrix} m=2a\\ a^2=25\rightarrow a=\pm 5\\ n=4a\end{matrix}\right.\)
\(\Rightarrow \left[\begin{matrix} \left\{\begin{matrix} m=10\\ n=20\end{matrix}\right.\\ \left\{\begin{matrix} m=-10\\ n=-20\end{matrix}\right.\end{matrix}\right.\)
Giải thích kĩ hơn dùm em tại sao lại có
P(x)=(x^2+ax+2)^2