Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.
Ta có: \(\left(x-y\right)^3+\left(y-z\right)^2+2015|x-z|=2017\)
Đặt \(\hept{\begin{cases}x-y=a\\y-z=b\end{cases}\left(a,b\in Z\right)}\) thì ta có
\(a^3+b^2+2015|a+b|=2017\)
+ Nếu a lẻ b lẻ thì a + b là số chẵn \(\Rightarrow\)VT là số chẵn mà VP là số lẻ nên không tồn tại a, b thỏa đề bài.
+ Nếu a lẻ b chẵn thì a + b là số lẻ \(\Rightarrow\)VT là số chẵn mà VP là số lẻ nên không tồn tại a, b thỏa đề bài.
+ Nếu a chẵn b lẻ thì a + b là số lẻ \(\Rightarrow\)VT là số chẵn mà VP là số lẻ nên không tồn tại a, b thỏa đề bài.
+ Nếu a chẵn b chẵn thì a + b là số chẵn \(\Rightarrow\)VT là số chẵn mà VP là số lẻ nên không tồn tại a, b thỏa đề bài.
Vậy không tồn tại a, b nguyên thỏa đề bài hay là không tồn tại x, y, z nguyên dương thỏa đề bài.
Ta có: \(\hept{\begin{cases}\left|a\right|\ge0\\\left|b\right|\ge0\\\left|c\right|\ge0\end{cases}}\Rightarrow\left|a\right|+\left|b\right|+\left|c\right|\ge0\)
a)\(\Rightarrow\left|\frac{1}{4}-x\right|+\left|x-y+z\right|+\left|\frac{2}{3}+y\right|\ge0\)
\("="\Leftrightarrow\hept{\begin{cases}x=\frac{1}{4}\\y=-\frac{2}{3}\\z=-\frac{11}{12}\end{cases}}\)
b) \(\Rightarrow\left|2-x\right|+\left|3-y\right|+\left|x+y+z\right|\ge0\)
\("="\Leftrightarrow\hept{\begin{cases}x=2\\y=3\\z=-5\end{cases}}\)
a) \(\left|\frac{1}{4}-x\right|+\left|x-y+z\right|+\left|\frac{2}{3}+y\right|=0\)
Ta có: \(\left|\frac{1}{4}-x\right|\ge0\)với mọi x
\(\left|x-y+z\right|\ge0\)vơi mọi x, y, z
\(\left|\frac{2}{3}+y\right|\ge0\) với mọi y
\(\left|\frac{1}{4}-x\right|+\left|x-y+z\right|+\left|\frac{2}{3}+y\right|\ge0\) với nọi x, y, z
Dấu "=" xảy ra khi và chỉ khi" \(\hept{\begin{cases}\frac{1}{4}-x=0\\x-y+z=0\\\frac{2}{3}+y=0\end{cases}\Leftrightarrow}\hept{\begin{cases}x=\frac{1}{4}\\y=-\frac{2}{3}\\z=-\frac{11}{12}\end{cases}}\)
câu b cách làm giống như câu a
Ta có:
\(\left(x+y\right):\left(5-z\right):\left(y+z\right):\left(9+y\right)=3:1:2:5\)
\(\Rightarrow\dfrac{x+y}{3}=\dfrac{5-z}{1}=\dfrac{y+z}{2}=\dfrac{9+y}{5}\)
Đặt \(\dfrac{x+y}{3}=\dfrac{5-z}{1}=\dfrac{y+z}{2}=\dfrac{9+y}{5}=k\)
\(\Rightarrow\left\{{}\begin{matrix}x+y=3k\\5-z=k\\y+z=2k\\9+y=5k\end{matrix}\right.\Rightarrow\left\{{}\begin{matrix}x=3k-y\left(1\right)\\z=5-k\left(2\right)\\z=2k-y\left(3\right)\\y=5k-9\left(4\right)\end{matrix}\right.\)
Từ (3) và (4)
\(\Rightarrow z=2k-\left(5k-9\right)\)
\(\Rightarrow z=2k-5k+9\left(5\right)\)
Từ (2) và (5)
\(\Rightarrow z=2k-5k+9=5-k\)
\(\Rightarrow2k-5k+9-5+k=0\)
\(\Rightarrow2k-5k+k+\left(9-5\right)=0\)
\(\Rightarrow\left(-2\right)k+4=0\)
\(\Rightarrow\left(-2\right)k=-4\)
\(\Rightarrow k=2\left(6\right)\)
Từ (2) và (6)
\(\Rightarrow z=5-2=3\)
Từ (4) và (6)
\(\Rightarrow y=5.2-9=1\)
Từ (1) và (6)
\(\Rightarrow x=3.2-1=5\)
Vậy \(x=5;y=1;z=3\)
Vì đây là lần đầu tiên mình làm bài này nên chỗ nào trình bày chưa được mong bạn sửa giúp ạ!
Ai giải đc cho 20k. nhanh tay nha, 1 người duy nhất
gửi k mới là chuyện