Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.
Câu a đề thiếu, bạn xem lại rồi bổ sung
b, Ta có: 2a = 3b <=> a/3 = b/2 <=> a/21 = b/14 (1)
5b = 7c <=> b/7 = c/5 <=> b/14 = c/10 (2)
Từ (1), (2) => a/21 = b/14 = c/10 <=> 3a/63 = 5c/70 = 7c/70
Áp dụng tính chất dãy tỉ số bằng nhau, ta có:
\(\frac{3a}{63}=\frac{5c}{70}=\frac{7c}{70}=\frac{3a+5c-7b}{63+70-70}=\frac{30}{63}=\frac{10}{21}\)
\(\Rightarrow\hept{\begin{cases}\frac{a}{21}=\frac{10}{21}\\\frac{b}{14}=\frac{10}{21}\\\frac{c}{10}=\frac{10}{21}\end{cases}\Rightarrow}\hept{\begin{cases}a=10\\b=\frac{20}{3}\\c=\frac{100}{21}\end{cases}}\)
Vậy...
a:b:c:d = 2:3:4:5
\(\Rightarrow\frac{a}{2}=\frac{b}{3}=\frac{c}{4}=\frac{d}{5}\)
Áp dụng tính chất dãy tỉ số bằng nhau:
\(\Rightarrow\frac{a}{2}=\frac{b}{3}=\frac{c}{4}=\frac{d}{5}=\frac{a+b+c+d}{2+3+4+5}=-\frac{42}{14}=-3\)
=> a = -3.2 = -6
b = -3.3 = -9
c = -3.4 = -12
d = -3.5 = -15
Vậy, a = -6; b = -9; c = -12; d = -15
\(a:b:c:d=2:3:4:5\)
\(\Leftrightarrow\frac{a}{2}=\frac{b}{3}=\frac{c}{4}=\frac{d}{5}=\frac{a+b+c+d}{2+3+4+5}=\frac{-42}{14}=-3\)
\(\Leftrightarrow\frac{a}{2}=-3\Leftrightarrow a=\left(-3\right).2=-6\)
\(\Leftrightarrow\frac{b}{3}=-3\Leftrightarrow b=\left(-3\right).3=-9\)
\(\Leftrightarrow\frac{c}{4}=-3\Leftrightarrow c=\left(-3\right).4=-12\)
\(\Leftrightarrow\frac{d}{5}=-3\Leftrightarrow d=\left(-3\right).5=-15\)
Ta có : \(a:b:c:d=2:3:4:5\)hay \(\frac{a}{2}=\frac{b}{3}=\frac{c}{4}=\frac{d}{5}\)
Đặt \(\frac{a}{2}=\frac{b}{3}=\frac{c}{4}=\frac{d}{5}=k\)
=> a = 2k,b = 3k,c = 4k,d = 5k
=> a + b + c + d = 2k + 3k + 4k + 5k
=> 14k = -42
=> k =-42 : 14 = -3
Do đó : a = 2.(-3) = -6,b = 3.(-3) = -9,c = 4.(-3) = -12,d = 5.(-3) = -15
Ta có a/2=b/3=c/4=d/5 và a+b+c+d=-42.
Theo tính chất của dãy tỉ số bằng nhau: a/2=b/3=c/4=d/5=a+b+c+d/2+3+4+5=42/14=3
=> a=3.2=6
b=3.3=9
c=3.4=12
e=3.5=15
Ta có:a:b:c:d=2:3:4:5
\(\Rightarrow\frac{a}{2}=\frac{b}{3}=\frac{c}{4}=\frac{d}{5}và\)
a+b+c+d=--42
\(\frac{a}{2}=\frac{b}{3}=\frac{c}{4}=\frac{d}{5}=\frac{a+b+c+d}{2+3+4+5}=\frac{-42}{14}=-3\)
=>a=-6 ;b=-9 ;c=-12 ;d=-15
Áp dụng tính chất của dãy tỉ số bằng nhau ta có :
\(\frac{a}{12}=\frac{b}{13}=\frac{c}{14}=\frac{d}{15}=\frac{a+b-c+d}{12+13-14+15}=\frac{-50}{26}=-\frac{25}{13}\)
Suy ra \(a=-\frac{25}{13}.12=-\frac{300}{13}\)
\(b=-\frac{25}{13}.13=-25\)
\(c=-\frac{25}{13}.14=-\frac{350}{13}\)
\(d=-\frac{25}{13}.15=-\frac{375}{13}\)
Theo bài ta có : \(\dfrac{a}{12} = \dfrac{b}{13} = \dfrac{c}{14} = \dfrac{d}{15}\)\(= \dfrac{a+b-c+d}{12+13-14+15} = \dfrac{-50}{26} = \dfrac{-25}{13}\)
\(\Rightarrow\) \(a = \dfrac{-25}{13} . 12 = \dfrac{-300}{13}\)
Tuong tự có \(b = \dfrac{-25}{13} . 13 = -25\) \(;\) \(c = \dfrac{-25}{13} . 14 = \dfrac{-350}{13}\)\(;\) \(d = \dfrac{-25}{13} . 15 = \dfrac{-375 }{13}\)
Vậy ........................
_______________________JK ~ liên Quân Group _______________________________
Theo đề bài ta có :
a : b : c : d = 2:3:4:5 \(\Rightarrow\frac{a}{2}=\frac{b}{3}=\frac{c}{4}=\frac{d}{5}\)
Áp dụng tính chất dãy tỉ bằng nhau ta có :
\(\frac{a}{2}=\frac{b}{3}=\frac{c}{4}=\frac{d}{5}=\frac{3a}{6}=\frac{2c}{8}=\frac{4d}{16}\)\(=\frac{3a+b-2c+4d}{6-3+8-16}=\frac{105}{17}\)
Thế nhé !!!
Ta có:
\(a:b:c:d=2:3:4:5\)
\(\Rightarrow\frac{a}{2}=\frac{b}{3}=\frac{c}{4}=\frac{d}{5}\) và a+b+c+d=-42
Áp dụng tính chất của dãy tỉ số bằng nhau:
\(\Rightarrow\frac{a}{2}=\frac{b}{3}=\frac{c}{4}=\frac{d}{5}=\frac{a+b+c+d}{2+3+4+5}=\frac{-42}{14}=-3\)
- \(\frac{a}{2}=2.\left(-3\right)=-6\)
- \(\frac{b}{3}=3.\left(-3\right)=-9\)
- \(\frac{c}{4}=4.\left(-3\right)=-12\)
- \(\frac{d}{5}=5.\left(-3\right)=-15\)
Vậy a=-6,b=-9,c=-12,d=-15.
^...^ ^_^có j ko hiểu bn cứ hỏi nhé
Ta có : \(a:b:c:d=2:3:4:5\)
\(\Rightarrow\frac{a}{2}=\frac{b}{3}=\frac{c}{4}=\frac{d}{5}\) và \(a+b+c+d=-42\)
Áp dụng tính chất của dãy tỉ số bằng nhau , ta có :
\(\frac{a}{2}=\frac{b}{3}=\frac{c}{4}=\frac{d}{5}=\frac{a+b+c+d}{2+3+4+5}=\frac{-42}{14}=-3\)
\(\Rightarrow\begin{cases}\frac{a}{2}=-3\Rightarrow a=-3.2=-6\\\frac{b}{3}=-3\Rightarrow b=-3.3=-9\\\frac{c}{4}=-3\Rightarrow c=-3.4=-12\\\frac{d}{5}=-3\Rightarrow d=3.-5=-15\end{cases}\)
Vậy \(\begin{cases}a=-6\\b=-9\\c=-12\\d=-15\end{cases}\)
ta có a:b:c:d=2:3:4:5
\(\Rightarrow\frac{a}{2}=\frac{b}{3}=\frac{c}{4}=\frac{d}{5}\)
áp dụng tính chất của dãy tỉ số bằng nhau ta có
\(\frac{a}{2}=\frac{b}{3}=\frac{c}{4}=\frac{d}{5}=\frac{a+b+c+d}{2+3+4+5}=-\frac{42}{14}=-3\)
\(\frac{a}{2}=-3\) a = -6 | \(\frac{b}{3}=-3\) b = -9 | \(\frac{c}{4}=-3\) c = -12 | \(\frac{d}{5}=-3\) d = -15 |
a : b : c : d = 2 : 3 : 4 : 5 =>\(\frac{a}{2}=\frac{b}{3}=\frac{c}{4}=\frac{d}{5}=\frac{a+b+c+d}{2+3+4+5}=\frac{-42}{14}=-3\)
=> a = -3.2 = -6 ; b = -3.3 = -9 ; c = -3.4 = -12 ; d = -3.5 = -15
ta viết lại như sau :
\(\frac{a}{15}=\frac{b}{7}=\frac{c}{3}=\frac{d}{1}\)Áp dụng tính chất của dãy tỉ số bằng nhau ta có :
\(\frac{a}{15}=\frac{b}{7}=\frac{c}{3}=\frac{d}{1}=\frac{a-b+c-d}{15-7+3-1}=\frac{120}{10}=12\)
\(\Rightarrow\hept{\begin{cases}a=12\times15=180\\b=7\times15=105\\c=3\times15=45\end{cases}}\text{ và }d=15\)