K
Khách

Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.

11 tháng 10 2015

2a=3b=>a/3=b/2=>a/6=b/4  (1)

3b=4c=>b/4=c/3  (2)

từ (1) và (2) => a/6=b/4=c/3

từ đó dùng tính chất dãy tỉ số = nhau là đc nha!

15 tháng 10 2021

\(2a=3b\Rightarrow\dfrac{a}{3}=\dfrac{b}{2}\Rightarrow\dfrac{a}{21}=\dfrac{b}{14}\\ 5b=7c\Rightarrow\dfrac{b}{7}=\dfrac{c}{5}\Rightarrow\dfrac{b}{14}=\dfrac{c}{10}\\ \Rightarrow\dfrac{a}{21}=\dfrac{b}{14}=\dfrac{c}{10}\)

Áp dụng t/c dtsbn:

\(\dfrac{a}{21}=\dfrac{b}{14}=\dfrac{c}{10}=\dfrac{3a}{63}=\dfrac{7b}{98}=\dfrac{5c}{50}=\dfrac{3a-7b+5c}{63-98+50}=\dfrac{-30}{15}=-2\\ \Rightarrow\left\{{}\begin{matrix}a=-42\\b=-28\\c=-20\end{matrix}\right.\)

15 tháng 10 2021

\(x:y:z=3:4:5\Rightarrow\dfrac{x}{3}=\dfrac{y}{4}=\dfrac{z}{5}\)

Đặt \(\dfrac{x}{3}=\dfrac{y}{4}=\dfrac{z}{5}=k\Rightarrow x=3k;y=4k;z=5k\)

\(2x^2+2y^2-3z^2=-100\\ \Rightarrow18k^2+32k^2-75k^2=-100\\ \Rightarrow-25k^2=-100\Rightarrow k^2=4\Rightarrow\left[{}\begin{matrix}k=2\\k=-2\end{matrix}\right.\\ \Rightarrow\left[{}\begin{matrix}x=6;y=8;z=10\\x=-6;y=-8;z=-10\end{matrix}\right.\)

31 tháng 12 2021

Ta có {|2a−3b+500|2021≥0∀a;b(5a−6b)2020≥0∀a;b⇒|2a−3b+500|2021+(5a−6b)2020≥0∀a;b\hept{|2a−3b+500|2021≥0∀a;b(5a−6b)2020≥0∀a;b⇒|2a−3b+500|2021+(5a−6b)2020≥0∀a;b

Dấu "=" xảy ra <=> 

{2a−3b=5005a−6b=0⇒{4a−6b=10005a−6b=0⇒{a=−1000b=−25003{2a−3b=5005a−6b=0⇒{4a−6b=10005a−6b=0⇒\hept{a=−1000b=−25003

Vậy a = -1000 ; b = -2500/3 là giá trị cần tìm

31 tháng 12 2021

cảm ơn bạn

18 tháng 11 2017

2a=3b nên 2a-3b=0

Do đó 2a-3b+c=c=6

Vậy 2a=3b=5c=30

suy ra a=30:2=15

          b=30:3=10

6 tháng 6 2018

not biết làm

28 tháng 3 2019

haha

BACDH

     +   Xét ▲BCD cân tại D có DH là đường trung tuyến => DH chính là đường cao của ▲BCD

=>  DH \(\perp\)CD  

     +    Áp dụng định lý Pitago vào ▲vuông DHC có : 

                 DC2 = DH2 + CH2   (1)

    +   Xét ▲vuông ABC có :  AH là đường trung tuyến ứng vs cạnh huyền.

=>   AH = \(\frac{BC}{2}\)=CH (2)

     Từ (1) và (2) có :

                DC2 = DH2 + CH2 = DH2 + AH2   ( đpcm )

BACDH

  +   Xét ▲BCD cân tại D có DH là đường trung tuyến => DH chính là đường cao của ▲BCD

=>  DH \(\perp\)CD  

     +    Áp dụng định lý Pitago vào ▲vuông DHC có : 

                 DC2 = DH2 + CH2   (1)

    +   Xét ▲vuông ABC có :  AH là đường trung tuyến ứng vs cạnh huyền.

=>   AH = \(\frac{BC}{2}\)=CH (2)

     Từ (1) và (2) có :

                DC2 = DH2 + CH2 = DH2 + AH2   ( đpcm )

27 tháng 11 2017

Giải : Xét phép trừ thứ nhất : Ở cột hàng trăm ta có a \(\ge\) c nên phép trừ ở hàng đơn vị và hàng chục có nhớ . Do đó ở cột hàng trăm :

a - c - 1 ( nhớ ) = 0 \(\Rightarrow\) c = a - 1          (1)

Xét phép trừ thứ hai : Ở cột hàng trăm ta có b > a nên phép trừ ở hàng chục có nhớ . Do đó ở cột hàng trăm :

b - a - 1 ( nhớ ) = 2 \(\Rightarrow\) a = b - 3                  (2)

Từ (1) và (2) suy ra : c = b - 4               (3)

Từ (2) và (3) suy ra : 

a + b + c = ( b - 3 ) + b + ( b - 4 ) = 3b - 7 \(\le\) 20.

Số không quá 20 và là tổng của bốn số chẵn liên tiếp có thể bằng :

         0 + 2 + 4 + 6 = 12 hoặc 2 + 4 + 6 + 8 = 20.

Trường hợp 3b - 7 = 12 cho 3b = 19 , loại .

Trường hợp 3b - 7 = 20 cho 3b = 27 nên b = 9.

Từ đó : a = 9 - 3 = 6 ; c = 9 - 4 = 5.

Ta được :

695 - 596 = 99

965 - 695 = 270