Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.
\(2a=3b\Rightarrow\dfrac{a}{3}=\dfrac{b}{2}\Rightarrow\dfrac{a}{21}=\dfrac{b}{14}\\ 5b=7c\Rightarrow\dfrac{b}{7}=\dfrac{c}{5}\Rightarrow\dfrac{b}{14}=\dfrac{c}{10}\\ \Rightarrow\dfrac{a}{21}=\dfrac{b}{14}=\dfrac{c}{10}\)
Áp dụng t/c dtsbn:
\(\dfrac{a}{21}=\dfrac{b}{14}=\dfrac{c}{10}=\dfrac{3a}{63}=\dfrac{7b}{98}=\dfrac{5c}{50}=\dfrac{3a-7b+5c}{63-98+50}=\dfrac{-30}{15}=-2\\ \Rightarrow\left\{{}\begin{matrix}a=-42\\b=-28\\c=-20\end{matrix}\right.\)
\(x:y:z=3:4:5\Rightarrow\dfrac{x}{3}=\dfrac{y}{4}=\dfrac{z}{5}\)
Đặt \(\dfrac{x}{3}=\dfrac{y}{4}=\dfrac{z}{5}=k\Rightarrow x=3k;y=4k;z=5k\)
\(2x^2+2y^2-3z^2=-100\\ \Rightarrow18k^2+32k^2-75k^2=-100\\ \Rightarrow-25k^2=-100\Rightarrow k^2=4\Rightarrow\left[{}\begin{matrix}k=2\\k=-2\end{matrix}\right.\\ \Rightarrow\left[{}\begin{matrix}x=6;y=8;z=10\\x=-6;y=-8;z=-10\end{matrix}\right.\)
Ta có {|2a−3b+500|2021≥0∀a;b(5a−6b)2020≥0∀a;b⇒|2a−3b+500|2021+(5a−6b)2020≥0∀a;b\hept{|2a−3b+500|2021≥0∀a;b(5a−6b)2020≥0∀a;b⇒|2a−3b+500|2021+(5a−6b)2020≥0∀a;b
Dấu "=" xảy ra <=>
{2a−3b=5005a−6b=0⇒{4a−6b=10005a−6b=0⇒{a=−1000b=−25003{2a−3b=5005a−6b=0⇒{4a−6b=10005a−6b=0⇒\hept{a=−1000b=−25003
Vậy a = -1000 ; b = -2500/3 là giá trị cần tìm
2a=3b nên 2a-3b=0
Do đó 2a-3b+c=c=6
Vậy 2a=3b=5c=30
suy ra a=30:2=15
b=30:3=10
B
+ Xét ▲BCD cân tại D có DH là đường trung tuyến => DH chính là đường cao của ▲BCD
=> DH \(\perp\)CD
+ Áp dụng định lý Pitago vào ▲vuông DHC có :
DC2 = DH2 + CH2 (1)
+ Xét ▲vuông ABC có : AH là đường trung tuyến ứng vs cạnh huyền.
=> AH = \(\frac{BC}{2}\)=CH (2)
Từ (1) và (2) có :
DC2 = DH2 + CH2 = DH2 + AH2 ( đpcm )
+ Xét ▲BCD cân tại D có DH là đường trung tuyến => DH chính là đường cao của ▲BCD
=> DH \(\perp\)CD
+ Áp dụng định lý Pitago vào ▲vuông DHC có :
DC2 = DH2 + CH2 (1)
+ Xét ▲vuông ABC có : AH là đường trung tuyến ứng vs cạnh huyền.
=> AH = \(\frac{BC}{2}\)=CH (2)
Từ (1) và (2) có :
DC2 = DH2 + CH2 = DH2 + AH2 ( đpcm )
Giải : Xét phép trừ thứ nhất : Ở cột hàng trăm ta có a \(\ge\) c nên phép trừ ở hàng đơn vị và hàng chục có nhớ . Do đó ở cột hàng trăm :
a - c - 1 ( nhớ ) = 0 \(\Rightarrow\) c = a - 1 (1)
Xét phép trừ thứ hai : Ở cột hàng trăm ta có b > a nên phép trừ ở hàng chục có nhớ . Do đó ở cột hàng trăm :
b - a - 1 ( nhớ ) = 2 \(\Rightarrow\) a = b - 3 (2)
Từ (1) và (2) suy ra : c = b - 4 (3)
Từ (2) và (3) suy ra :
a + b + c = ( b - 3 ) + b + ( b - 4 ) = 3b - 7 \(\le\) 20.
Số không quá 20 và là tổng của bốn số chẵn liên tiếp có thể bằng :
0 + 2 + 4 + 6 = 12 hoặc 2 + 4 + 6 + 8 = 20.
Trường hợp 3b - 7 = 12 cho 3b = 19 , loại .
Trường hợp 3b - 7 = 20 cho 3b = 27 nên b = 9.
Từ đó : a = 9 - 3 = 6 ; c = 9 - 4 = 5.
Ta được :
695 - 596 = 99
965 - 695 = 270
2a=3b=>a/3=b/2=>a/6=b/4 (1)
3b=4c=>b/4=c/3 (2)
từ (1) và (2) => a/6=b/4=c/3
từ đó dùng tính chất dãy tỉ số = nhau là đc nha!