Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.
a/4=b/5=c/2
AD t/c dãy các tỉ số bằng nhau,ta có:
a/4=b/5=c/2=a+b-c/4+5-2=21/7=3
a/4=3 nên a=12
b/5=3 nên b=15
c/2=3 nên c=6
Vậy.................
----------------------.hok tốt--------------------
\(\frac{a}{4}=\frac{b}{5}=\frac{c}{2}\)
Áp dụng tính chất dãy tỉ số bằng nhau ta có:
\(\frac{a}{4}=\frac{b}{5}=\frac{c}{2}=\frac{a+b-c}{4+5-2}=\frac{21}{7}=3\)
suy ra: \(\frac{a}{4}=3\)\(\Rightarrow\)\(a=12\)
\(\frac{b}{5}=3\)\(\Rightarrow\)\(b=15\)
\(\frac{c}{2}=3\)\(\Rightarrow\)\(c=6\)
Vậy...
a) \(\hept{\begin{cases}2x=5y=8z\\x-2y-3z=0,5\end{cases}}\Rightarrow\hept{\begin{cases}\frac{x}{\frac{1}{2}}=\frac{y}{\frac{1}{5}}=\frac{z}{\frac{1}{8}}\\x-2y-3z=0,5\end{cases}}\Rightarrow\hept{\begin{cases}\frac{x}{\frac{1}{2}}=\frac{2y}{\frac{2}{5}}=\frac{3z}{\frac{3}{8}}\\x-2y-3z=0,5\end{cases}}\)
Áp dụng tính chất dãy tỉ số bằng nhau ta có :
\(\frac{x}{\frac{1}{2}}=\frac{2y}{\frac{2}{5}}=\frac{3z}{\frac{3}{8}}=\frac{x-2y-3z}{\frac{1}{2}-\frac{2}{5}-\frac{3}{8}}=\frac{0,5}{-\frac{11}{40}}=\frac{-20}{11}\)
=> x = -10/11 ; y = -4/11 ; z = -5/22
b) \(\hept{\begin{cases}0,2a=0,3b=0,4c\\2a+3b-5c=-1,8\end{cases}}\Rightarrow\hept{\begin{cases}\frac{a}{5}=\frac{b}{\frac{10}{3}}=\frac{c}{\frac{5}{2}}\\2a+3b-5c=-1,8\end{cases}}\Rightarrow\hept{\begin{cases}\frac{2a}{10}=\frac{3b}{10}=\frac{5c}{\frac{25}{2}}\\2a+3b-5c=-1,8\end{cases}}\)
Áp dụng tính chất dãy tỉ số bằng nhau ta có :
\(\frac{2a}{10}=\frac{3b}{10}=\frac{5c}{\frac{25}{2}}=\frac{2a+3b-5c}{10+10-\frac{25}{2}}=\frac{-1,8}{\frac{15}{2}}=-\frac{6}{25}\)
=> a = -6/5 ; b = -4/5 ; c = -3/5
c) \(\hept{\begin{cases}a=\frac{3}{4}b=\frac{5}{6}c\\2b-a-c=-39\end{cases}}\Rightarrow\hept{\begin{cases}\frac{a}{1}=\frac{b}{\frac{4}{3}}=\frac{c}{\frac{6}{5}}\\2b-a-c=-39\end{cases}}\Rightarrow\hept{\begin{cases}\frac{a}{1}=\frac{2b}{\frac{8}{3}}=\frac{c}{\frac{6}{5}}\\2b-a-c=-39\end{cases}}\)
Áp dụng tính chất dãy tỉ số bằng nhau ta có :
\(\frac{a}{1}=\frac{2b}{\frac{8}{3}}=\frac{c}{\frac{6}{5}}=\frac{2b-a-c}{\frac{8}{3}-1-\frac{6}{5}}=\frac{-39}{\frac{7}{15}}=\frac{-585}{7}\)
=> a = -585/7 ; b = -780/7 ; c = -702/7
a) Ta có :\(\hept{\begin{cases}2x=5y\\3y=8z\end{cases}}\Rightarrow\hept{\begin{cases}\frac{x}{5}=\frac{y}{2}\\\frac{y}{8}=\frac{z}{3}\end{cases}}\Rightarrow\hept{\begin{cases}\frac{x}{20}=\frac{y}{8}\\\frac{y}{8}=\frac{z}{3}\end{cases}}\Rightarrow\frac{x}{20}=\frac{y}{8}=\frac{z}{3}\Rightarrow\frac{x}{20}=\frac{2y}{16}=\frac{3z}{9}\)
Áp dụng tính chất dãy tỉ số bằng nhau ta có :
\(\frac{x}{20}=\frac{y}{8}=\frac{z}{3}=\frac{2y}{16}=\frac{3z}{9}=\frac{x-2y-3z}{20-16-9}=\frac{0,5}{-5}=-0,1\)
=> x = -2 ; y = -0,8 ; z = -0,3
b) Ta có : \(0,2a=0,3b=0,4c\Rightarrow0,2a.\frac{1}{12}=0,3b.\frac{1}{12}=0,4c.\frac{1}{12}\)
=> \(\frac{a}{60}=\frac{b}{40}=\frac{c}{30}\Rightarrow\frac{2a}{120}=\frac{3b}{120}=\frac{5c}{150}\)
Áp dụng tính chất dãy tỉ số bằng nhau ta có \(\frac{a}{60}=\frac{b}{40}=\frac{c}{30}=\frac{2a}{120}=\frac{3b}{120}=\frac{5c}{150}=\frac{2a+3b-5c}{120+120-150}=\frac{-1,8}{90}=-0,02\)
=> a = -1,2 ; b = -0,8 ; c = -0,6
c) \(\frac{2}{3}a=\frac{3}{4}b=\frac{5}{6}c\)
=> \(\frac{2}{3}a.\frac{1}{30}=\frac{3}{4}b.\frac{1}{30}=\frac{5}{6}c.\frac{1}{30}\Rightarrow\frac{a}{45}=\frac{b}{40}=\frac{c}{36}\Rightarrow\frac{a}{45}=\frac{2b}{80}=\frac{c}{36}\)
Áp dụng tính chất dãy tỉ số bằng nhau ta có :
\(\frac{a}{45}=\frac{b}{40}=\frac{c}{36}=\frac{2b}{80}=\frac{2b-a-c}{80-45-36}=\frac{-39}{-1}=39\)
=> a = 1755 ; b = 1560 ; c = 1404
2.Giải:
Theo bài ra ta có:
\(\frac{a}{2}=\frac{b}{3}=\frac{c}{4}=\frac{d}{5}\) và a + b + c + d = -42
Theo tính chất dãy tỉ số bằng nhau ta có:
\(\frac{a}{2}=\frac{b}{3}=\frac{c}{4}=\frac{d}{5}=\frac{a+b+c+d}{2+3+4+5}=\frac{-42}{14}=-3\)
+) \(\frac{a}{2}=-3\Rightarrow a=-6\)
+) \(\frac{b}{3}=-3\Rightarrow b=-9\)
+) \(\frac{c}{4}=-3\Rightarrow c=-12\)
+) \(\frac{d}{5}=-3\Rightarrow d=-15\)
Vậy a = -6
b = -9
c = -12
d = -15
Bài 3:
Ta có:\(\frac{a}{2}=\frac{b}{3}\Leftrightarrow\frac{a}{10}=\frac{b}{15}\); \(\frac{b}{5}=\frac{c}{4}\Leftrightarrow\frac{b}{15}=\frac{c}{12}\)
\(\Rightarrow\frac{a}{10}=\frac{b}{15}=\frac{c}{12}\)
Áp dụng tc dãy tỉ:
\(\frac{a}{10}=\frac{b}{15}=\frac{c}{20}=\frac{a+b+c}{10+15+12}=\frac{-49}{37}\)
Với \(\frac{a}{10}=\frac{-49}{37}\Rightarrow a=10\cdot\frac{-49}{37}=\frac{-490}{37}\)
Với \(\frac{b}{15}=\frac{-49}{37}\Rightarrow b=15\cdot\frac{-49}{37}=\frac{-735}{37}\)
Với \(\frac{c}{12}=\frac{-49}{37}\Rightarrow c=12\cdot\frac{-49}{37}=\frac{-588}{37}\)
a, Nhân ba vế lại ta được:
ab.bc.ca = 3/5.4/5.3/4
(abc)2 = \(\left(\pm1\right)^2\)
=> abc = 1 hoặc abc = -1
Với abc = 1 => \(\hept{\begin{cases}\frac{3}{5}c=1\\\frac{4}{5}a=1\\\frac{3}{4}b=1\end{cases}\Rightarrow\hept{\begin{cases}c=\frac{5}{3}\\a=\frac{5}{4}\\b=\frac{4}{3}\end{cases}}}\)
Với abc = -1 => \(\hept{\begin{cases}\frac{3}{5}c=-1\\\frac{4}{5}a=-1\\\frac{3}{4}b=-1\end{cases}\Rightarrow\hept{\begin{cases}c=-\frac{5}{3}\\a=\frac{-5}{4}\\b=-\frac{4}{3}\end{cases}}}\)
b, cộng 3 vế lại ta được:
a(a+b+c)+b(a+b+c)+c(a+b+c)=-12+18+30
(a+b+c)2=36
(a+b+c)2=\(\left(\pm6\right)^2\)
=> a+b+c = 6 hoặc a+b+c = -6
Với a+b+c=6 => \(\hept{\begin{cases}6a=-12\\6b=18\\6c=30\end{cases}\Rightarrow\hept{\begin{cases}a=-2\\b=3\\c=5\end{cases}}}\)
Với a+b+c=-6 => \(\hept{\begin{cases}-6a=-12\\-6b=18\\-6c=30\end{cases}\Rightarrow\hept{\begin{cases}a=2\\b=-3\\c=-5\end{cases}}}\)
Bài 1 : x/3 = y/4 = z/5 => x²/9 = y²/16 = z²/25
=> 2x²/18 = 2y²/32 = 3z²/75
=> x²/9 = (2x² + 2y² - 3z²)/(18 + 32 - 75) = - 100/(-25) = 1/4
=> x²/9 = 1/4 => x² = 9/4 => x = ±3/2
y²/16 = 1/4 => y² = 4 => y = ± 2
z²/25 = 1/4 => z² = 25/4 => z = ±5/2
Mà x, y, z cùng dấu.
Vậy (x ; y ; z) = (3/2 ; 2 ; 5/2) , (-3/2 ; -2 ; -5/2)
B3 ko tìm được x,y,z thỏa mãn do kết quả là 1 số không dương
Bài 2: Mình nghĩ câu a là a+2b-3c=-20
a) Ta có: a/2 = b/3 = c/4 = 2b/6 = 3c/12 = a + 2b - 3c/ 2 + 6 - 12 = -20/-4 = 5
a/2 = 5 => a = 2 . 5 = 10
b/3 = 5 => b = 5 . 3 = 15
c/4 = 5 => c = 5 . 4 = 20
Vậy a = 10; b = 15; c = 20
b) Ta có: a/2 = b/3 => a/10 = b/15
b/5 = c/4 => b/15 = c/12
=> a/10 = b/15 = c/12 = a - b + c / 10 - 15 + 12 = -49/7 = -7
a/10 = -7 => a = -7 . 10 = -70
b/15 = -7 => b = -7 . 15 = -105
c/12 = -7 => c = -7 . 12 = -84
Vậy a = -70; b = -105; c = -84.
Áp dụng tính chất của dãy tỉ số bằng nhau ta có :
\(\frac{a}{4}=\frac{b}{5}=\frac{c}{2}=\frac{a+b-c}{4+5-2}=\frac{21}{7}=3\)
+) \(\frac{a}{4}=3\Rightarrow a=12\)
+) \(\frac{b}{5}=3\Rightarrow b=15\)
+) \(\frac{c}{2}=3\Rightarrow c=6\)
Vậy a = 12, b = 15 và c = 6
_Chúc bạn học tốt_
Ta có :
\(\frac{a}{4}=\frac{b}{5}=\frac{c}{2}\) và \(a+b-c=21\)
Áp dụng tính chất của dãy tỉ số bằng nhau , ta có :
\(\frac{a}{4}=\frac{b}{5}=\frac{c}{2}=\frac{a+b-c}{4+5-2}=\frac{21}{7}=3\)
\(\Rightarrow\hept{\begin{cases}\frac{a}{4}=3\\\frac{b}{5}=3\\\frac{c}{2}=3\end{cases}\Rightarrow\hept{\begin{cases}a=3.4=12\\b=3.5=15\\c=3.2=6\end{cases}}}\)
Vậy \(a=12;b=15;c=6\)
\(\frac{a}{2}=\frac{b}{3};\frac{b}{5}=\frac{c}{4}\Rightarrow\frac{a}{10}=\frac{b}{15}=\frac{c}{12}\)
Theo t/c dãy tỉ số bằng nhau ta có:
\(\frac{a}{10}=\frac{b}{15}=\frac{c}{12}=\frac{a-b+c}{10-15+12}=-\frac{49}{7}=-7\)
=> \(\frac{a}{10}=-7\Rightarrow a=-7.10=-70\)
=>\(\frac{b}{15}=-7\Rightarrow b=-7.15=-105\)
=>\(\frac{c}{12}=-7\Rightarrow c=-7.12=-84\)
Theo đề bài ta có :
a/2=b/3=c/4 va a-b+c=-49
Áp dụng tính chất dãy tỉ số bằng nhau :
a/2=b/3=c/4=a-b+c/2-3+4=-49/3=-16,333333
de sai roi
\(\frac{a}{2}=\frac{b}{3};\frac{b}{5}=\frac{c}{4}\) va a-b+c=-49
\(\frac{a}{2}=\frac{b}{3};\frac{b}{5}=\frac{c}{4}\Rightarrow\frac{a}{2}=\frac{5b}{15}=\frac{3b}{15}=\frac{c}{4}\Rightarrow\frac{a}{10}=\frac{b}{15};\frac{b}{15}=\frac{c}{12}\Rightarrow\frac{a}{10}=\frac{b}{15}=\frac{c}{12}\)
Áp dụng tính chất dãy tỉ số bằng nhau ta có :
\(\frac{a}{10}=\frac{b}{15}=\frac{c}{12}=\frac{a-b+c}{10-15+12}=-\frac{49}{7}=-7\)
Suy ra : \(\frac{a}{10}=-7\Rightarrow a=-7.10=-70\)
\(\frac{b}{15}=-7\Rightarrow b=-7.15=-105\)
\(\frac{c}{12}=-7\Rightarrow c=-7.12=-84\)
\(\frac{a}{2}=\frac{b}{3};\frac{b}{5}=\frac{c}{4}\Rightarrow\frac{a}{10}=\frac{b}{15};\frac{b}{15}=\frac{c}{12}\Rightarrow\frac{a}{10}=\frac{b}{15}=\frac{c}{12}\)
áp dụng tính chất của dãy tỉ số bằng nhau ta có:
\(\frac{a}{10}=\frac{b}{15}=\frac{c}{12}=\frac{a-b+c}{10-15+12}=\frac{-49}{7}=-7\)
suy ra: \(\frac{a}{10}=-7\Rightarrow a=-7.10=-70\)
\(\frac{b}{15}=-7\Rightarrow b=-7.15=-105\)
\(\frac{c}{12}=-7\Rightarrow c=-7.12=-84\)
\(\frac{a}{2}=\frac{b}{3};\frac{b}{5}=\frac{c}{4}\)và a-b+c=-49
\(\Rightarrow\frac{a.1}{2.5}=\frac{b.1}{3.5}\Rightarrow\frac{a}{10}=\frac{b}{15}\)(1)
\(\Rightarrow\frac{b.1}{5.3}=\frac{c.1}{4.3}\Rightarrow\frac{b}{15}=\frac{c}{12}\)(2)
Từ (1) và (2)\(\Rightarrow\frac{a}{10}=\frac{b}{15}=\frac{c}{12}\)và a-b+c=-49
Áp dụng tính chất của dãy tỉ số bằng nhau:
Ta được:\(\frac{a}{10}=\frac{b}{15}=\frac{c}{12}=\frac{a+b+c}{10-15+12}=\frac{-49}{7}=-7\)
Vì \(\frac{a}{10}=-7\Rightarrow a=-7.10=-70\)
\(\frac{b}{15}=-7\Rightarrow b=-7.15=-105\)
\(\frac{c}{12}=-7\Rightarrow c=-7.12=-84\)
Vậy a=-70
b=-105
c=-84
\(\frac{a}{2}=\frac{b}{3}\) => \(\frac{a}{10}=\frac{b}{15}\)
\(\frac{b}{5}=\frac{c}{4}\) => \(\frac{b}{15}=\frac{c}{12}\)
=> \(\frac{a}{10}=\frac{b}{15}=\frac{c}{12}=\frac{a-b+c}{10-15+12}=\frac{-49}{7}=-7\)(Tính chất dãy tỉ số bằng nhau)
=> \(\frac{a}{10}=-7\) => a = -70
\(\frac{b}{15}=-7\)=> b = -105
\(\frac{c}{12}=-7\) => c = -84