K
Khách

Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.

Y
13 tháng 2 2019

a) PT \(\Leftrightarrow\dfrac{x^2-x+2}{\left(x-1\right)^3}=\dfrac{A+B\left(x-1\right)+C\left(x-1\right)^2}{\left(x-1\right)^3}\)

\(\Leftrightarrow x^2-x+2=A+Bx-B+Cx^2-2Cx+C\)

\(\Leftrightarrow x^2-x+2=Cx^2+x\left(B-2C\right)+\left(A+C-B\right)\)

\(\Leftrightarrow\left\{{}\begin{matrix}C=1\\B-2C=-1\\A+C-B=2\end{matrix}\right.\Leftrightarrow\left\{{}\begin{matrix}A=2\\B=1\\C=1\end{matrix}\right.\)

27 tháng 11 2022

b: \(\Leftrightarrow\dfrac{x^2+2x-1}{\left(x-1\right)\left(x^2+1\right)}=\dfrac{A\cdot x^2+A+\left(Bx+C\right)\left(x-1\right)}{\left(x^2+1\right)\left(x-1\right)}\)

\(\Leftrightarrow x^2\cdot A+A+x^2\cdot B-x\cdot B+x\cdot C-C=x^2+2x-1\)

\(\Leftrightarrow x^2\left(A+B\right)+x\left(-B+C\right)+A-C=x^2+2x-1\)

=>A+B=1; -B+C=2; A-C=-1

=>A+C=3; A-C=-1; A+B=1

=>A=1; C=2; B=1-A=0

a: =>a(x+1)(x+2)+bx(x+2)+cx(x+1)=1

=>a(x^2+3x+2)+bx^2+2bx+cx^2+cx=1

=>ax^2+3ax+2a+bx^2+2bx+cx^2+cx=1

=>x^2(a+b+c)+x(3a+2b+c)+2a=1

=>a+b+c=0 và 3a+2b+c=0 và a=1/2

=>a=1/2; b+c=-1/2; 2b+c=-3/2

=>b=-1; c=1/2; a=1/2

b: =>1=(ax+b)(x-1)+c(x^2+1)

=>x^2*a-a*x+bx-b+cx^2+c=1

=>x^2(a+c)+x(-a+b)-b+c=1

=>a+c=0 và -a+b=0 và -b+c=1

=>a+b=-1 và -a+b=0 và a+c=0

=>a=-1/2; b=-1/2; c=-a=1/2

9 tháng 8 2017

a) \(\dfrac{1}{\left(a-b\right)\left(b-c\right)}+\dfrac{1}{\left(b-c\right)\left(c-a\right)}+\dfrac{1}{\left(c-a\right)\left(a-b\right)}\)

\(=\dfrac{c-a+a-b+b-c}{\left(a-b\right)\left(b-c\right)\left(c-a\right)}=0\)

b) \(\dfrac{\left(a^2-\left(b+c\right)^2\right)\left(a+b-c\right)}{\left(a+b+c\right)\left(a^2+c^2-2ac-b^2\right)}\)

\(=\dfrac{\left(a-b-c\right)\left(a+b+c\right)\left(a+b-c\right)}{\left(a+b+c\right)\left(\left(a-c\right)^2-b^2\right)}\)

\(=\dfrac{\left(a-c-b\right)\left(a-c+b\right)}{\left(a-c-b\right)\left(a-c+b\right)}=1\)

c) \(\dfrac{x-1}{x^3}-\dfrac{x+1}{x^3-x^2}+\dfrac{3}{x^3-2x^2+x}\)

\(=\dfrac{x-1}{x^3}-\dfrac{x+1}{x^2\left(x-1\right)}+\dfrac{3}{x\left(x-1\right)^2}\)

\(=\dfrac{\left(x-1\right)^3-x\left(x+1\right)\left(x-1\right)+3x^2}{x^3\left(x-1\right)^2}\)

\(=\dfrac{x^3-3x^2+3x-1-x^3+x+3x^2}{x^3\left(x-1\right)^2}\)

\(=\dfrac{4x-1}{x^3\left(x-1\right)^2}\)

d) \(\left(\dfrac{x^2-y^2}{xy}-\dfrac{1}{x+y}\left(\dfrac{x^2}{y}-\dfrac{y^2}{x}\right)\right):\dfrac{x-y}{x}\)

\(=\left(\dfrac{\left(x-y\right)\left(x+y\right)}{xy}-\dfrac{1}{x+y}.\dfrac{x^3-y^3}{xy}\right):\dfrac{x-y}{x}\)

\(=\left(\dfrac{\left(x-y\right)\left(x+y\right)}{xy}-\dfrac{\left(x-y\right)\left(x^2+xy+y^2\right)}{xy\left(x+y\right)}\right):\dfrac{x-y}{x}\)

\(=\dfrac{\left(x-y\right)\left(x^2+2xy+y^2-x^2-xy-y^2\right)}{xy\left(x+y\right)}.\dfrac{x}{x-y}\)

\(=\dfrac{x}{x+y}\)

10 tháng 8 2017

thanks hihi

a: \(=\dfrac{x+1}{x+2}\cdot\dfrac{x+3}{x+2}\cdot\dfrac{x+1}{x+3}=\dfrac{\left(x+1\right)^2}{\left(x+2\right)^2}\)

b: \(=\dfrac{x+1}{x+2}:\dfrac{\left(x+1\right)\left(x+2\right)}{\left(x+3\right)^2}\)

\(=\dfrac{x+1}{x+2}\cdot\dfrac{\left(x+3\right)^2}{\left(x+1\right)\left(x+2\right)}=\dfrac{\left(x+3\right)^2}{\left(x+2\right)^2}\)

c: \(=\dfrac{\left(x+3\right)\left(x-1\right)-\left(2x-1\right)\left(x+1\right)-\left(x-3\right)}{\left(x-1\right)\left(x+1\right)}\)

\(=\dfrac{x^2+2x-3-2x^2-2x+x+1-x+3}{\left(x-1\right)\left(x+1\right)}\)

\(=\dfrac{-x^2+1}{\left(x-1\right)\left(x+1\right)}=-1\)

NV
18 tháng 3 2021

1a.

ĐKXĐ: \(x\ne\left\{1;3\right\}\)

\(\Leftrightarrow\dfrac{6}{x-1}=\dfrac{4}{x-3}+\dfrac{4}{x-3}\)

\(\Leftrightarrow\dfrac{3}{x-1}=\dfrac{4}{x-3}\Leftrightarrow3\left(x-3\right)=4\left(x-1\right)\)

\(\Leftrightarrow3x-9=4x-4\Rightarrow x=-5\)

b.

ĐKXĐ: \(x\ne\left\{-1;2\right\}\)

\(\Leftrightarrow\dfrac{5}{x+1}=\dfrac{3}{2-x}+\dfrac{1}{2-x}\)

\(\Leftrightarrow\dfrac{5}{x+1}=\dfrac{4}{2-x}\Leftrightarrow5\left(2-x\right)=4\left(x+1\right)\)

\(\Leftrightarrow10-2x=4x+4\Leftrightarrow6x=6\Rightarrow x=1\)

NV
18 tháng 3 2021

1c.

ĐKXĐ: \(x\ne\left\{2;5\right\}\)

\(\Leftrightarrow\dfrac{3x\left(x-5\right)}{\left(x-2\right)\left(x-5\right)}-\dfrac{x\left(x-2\right)}{\left(x-2\right)\left(x-5\right)}=\dfrac{-3x}{\left(x-2\right)\left(x-5\right)}\)

\(\Leftrightarrow3x\left(x-5\right)-x\left(x-2\right)=-3x\)

\(\Leftrightarrow2x^2-10x=0\Leftrightarrow2x\left(x-5\right)=0\Rightarrow\left[{}\begin{matrix}x=0\\x=5\left(loại\right)\end{matrix}\right.\)

2a.

\(\Leftrightarrow-4x^2-5x+6=x^2+4x+4\)

\(\Leftrightarrow5x^2+9x-2=0\Rightarrow\left[{}\begin{matrix}x=-2\\x=\dfrac{1}{5}\end{matrix}\right.\)

2b.

\(2x^2-6x+1=0\Rightarrow x=\dfrac{3\pm\sqrt{7}}{2}\)

b: \(=\left[\dfrac{2}{3x}-\dfrac{2}{x+1}\cdot\dfrac{x+1-3x^2-3x}{3x}\right]\cdot\dfrac{x}{x+1}\)

\(=\left(\dfrac{2}{3x}-\dfrac{2}{x+1}\cdot\dfrac{-3x^2-2x+1}{3x}\right)\cdot\dfrac{x}{x+1}\)

\(=\dfrac{2x+2+6x^2+4x-2}{3x\left(x+1\right)}\cdot\dfrac{x}{x+1}\)

\(=\dfrac{6x^2+6x}{3\left(x+1\right)}\cdot\dfrac{1}{x+1}\)

\(=\dfrac{6x\left(x+1\right)}{3\left(x+1\right)^2}=\dfrac{2x}{x+1}\)

c: \(VT=\left[\dfrac{2}{\left(x+1\right)^3}\cdot\dfrac{x+1}{x}+\dfrac{1}{\left(x+1\right)^2}\cdot\dfrac{1+x^2}{x^2}\right]\cdot\dfrac{x^3}{x-1}\)

\(=\left(\dfrac{2}{x\left(x+1\right)^2}+\dfrac{x^2+1}{x^2\cdot\left(x+1\right)^2}\right)\cdot\dfrac{x^3}{x-1}\)

\(=\dfrac{2x+x^2+1}{x^2\cdot\left(x+1\right)^2}\cdot\dfrac{x^3}{x-1}\)

\(=\dfrac{\left(x+1\right)^2}{\left(x+1\right)^2}\cdot\dfrac{x}{x-1}=\dfrac{x}{x-1}\)