K
Khách

Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.

27 tháng 11 2021

\(\left(1+x\sqrt{x^2+1}\right)\left(\sqrt{x^2+1}-x\right)=1\)

\(\Rightarrow\dfrac{1+x\sqrt{x^2+1}}{\sqrt{x^2+1}+x}=1\)

\(\Rightarrow1+x\sqrt{x^2+1}=\sqrt{x^2+1}+x\)

\(\Rightarrow1+x\sqrt{x^2+1}-\sqrt{x^2+1}-x=0\)

\(\Rightarrow-\left(x-1\right)+\left(x-1\right)\sqrt{x^2+1}=0\)

\(\Rightarrow\left(x-1\right)\left(\sqrt{x^2+1}-1\right)=0\)

\(\Rightarrow\left[{}\begin{matrix}x-1=0\\\sqrt{x^2+1}-1=0\end{matrix}\right.\)

\(\Rightarrow\left[{}\begin{matrix}x=1\\\sqrt{x^2+1}=1\end{matrix}\right.\)

\(\Rightarrow\left[{}\begin{matrix}x=1\\x^2+1=1\end{matrix}\right.\)

\(\Rightarrow\left[{}\begin{matrix}x=1\\x=0\end{matrix}\right.\)

 

27 tháng 11 2021

\(a,2y^2-x+2xy=y+4\\ \Leftrightarrow2y\left(x+y\right)-\left(x+y\right)=4\\ \Leftrightarrow\left(2y-1\right)\left(x+y\right)=4=4\cdot1=\left(-4\right)\left(-1\right)=\left(-2\right)\left(-2\right)=2\cdot2\)

Vì \(x,y\in Z\Leftrightarrow2y-1\) lẻ 

\(\left\{{}\begin{matrix}2y-1=1\\x+y=4\end{matrix}\right.\Leftrightarrow\left\{{}\begin{matrix}x=3\\y=1\end{matrix}\right.\\ \Leftrightarrow\left\{{}\begin{matrix}2y-1=-1\\x+y=4\end{matrix}\right.\Leftrightarrow\left\{{}\begin{matrix}x=4\\y=0\end{matrix}\right.\)

Vậy PT có nghiệm \(\left(x;y\right)=\left\{\left(3;1\right);\left(4;0\right)\right\}\)

4 tháng 7 2016

Bài 1: 

PT \(5x^2+10x+5+2y^2+4y+2=13\Leftrightarrow5\left(x+1\right)^2+2\left(y+1\right)^2=13.\)(1)

\(\Rightarrow5\left(x+1\right)^2=13-2\left(y+1\right)^2\le13\forall y\)

Do x nguyên nên (x+1)2 chỉ có thể bằng 0 hoặc 1.

  • Nếu (x+1)= 0 thì 2(y+1)2 = 13 => không có y nguyên
  • Nếu (x+1)= 1 => x = 0 hoặc -2; thì 2(y+1)2 = 8 => \(y+1=\orbr{\begin{cases}2\\-2\end{cases}\Rightarrow y=\orbr{\begin{cases}1\\-3\end{cases}}}\)

PT có 4 nghiệm nguyên là (x=0;y=1) ; (x=0;y=-3) ; (x=-2;y=1) ; (x=-2;y=-3) .

4 tháng 7 2016

Mình viết mấy lần đều bị treo màn hình khi nhập công thức chăc vì dài quá.

Mình hướng dẫn thôi. Bạn tự làm vậy.

1./ Viết: \(A=\sqrt{3}\sqrt{2-\sqrt{2+\sqrt{3}}}-\sqrt{2+\sqrt{2+\sqrt{3}}}.\)

2./ Bình phương A. Sau khi biến đổi được:

\(A^2=8-2\sqrt{2+\sqrt{3}}-2\sqrt{3}\sqrt{2-\sqrt{3}}\)

\(\Rightarrow A^2-8=-2\left(\sqrt{2+\sqrt{3}}+\sqrt{3}\sqrt{2-\sqrt{3}}\right).\)

3./ Bình phương lần nữa được:

\(\left(A^2-8\right)^2=32\)

Nên A là nghiệm của PT đã cho.

11 tháng 9 2020

a.  \(x^2\left(y-1\right)+y^2\left(x-1\right)=1\)

<=> \(x^2y+y^2x-\left(x^2+y^2\right)=1\)

<=> \(xy\left(x+y\right)-\left(x+y\right)^2+2xy=1\)

Đặt: x + y = u; xy = v => u; v là số nguyên

Ta có: uv - \(u^2+2v=1\)

<=> \(u^2-uv-2v+1=0\) 

<=> \(u^2+1=v\left(2+u\right)\)

=> \(u^2+1⋮2+u\)

=> \(u^2-4+5⋮2+u\)

=> \(5⋮2-u\)

=> 2 - u = 5; 2 - u = -5; 2- u = 1; 2- u = -1 

Mỗi trường hợp sẽ tìm đc v 

=> x; y 

8 tháng 1 2019

\(ĐKXĐ:x;y\ge\frac{1}{2}\)

Chia cả 2 vế của pt cho x ; y ta được

\(\frac{\sqrt{2y-1}}{y}+\frac{\sqrt{2x-1}}{x}=2\)

Dễ dàng c/m được \(\hept{\begin{cases}\sqrt{2y-1}\le y\\\sqrt{2x-1}\le x\end{cases}\Rightarrow VT\le1+1=2}\)

Dấu "=" xảy ra <=>. x= y = 1

Vậy x = y = 1

9 tháng 1 2019

Rất easy! Dùng Cô si ngược đê!

ĐKXĐ: \(x,y\ge\frac{1}{2}\)

Theo Cô si (ngược),ta có:

\(VT=x\sqrt{1\left(2y-1\right)}+y\sqrt{1\left(2x-1\right)}\)

\(VT\le x.\frac{2y-1+1}{2}+y.\frac{2x-1+1}{2}\)

\(=xy+yx=2xy=VP\)

Dấu "=" xảy ra \(\Leftrightarrow2x-1=2y-1=1\Leftrightarrow2x=2y=2\Leftrightarrow x=y=1\)

27 tháng 1 2021

Ta có: \(\left(x+2y\right)\left(3x+4y\right)=96\) ( x,y nguyên)

Lại có: \(3x+4y-\left(x+2y\right)=2x+2y\) ( chẵn)

=> 3x+4y , x+2y cùng chẵn hoặc cùng lẻ ( 1)

Mà (x+2y)(3x+4y)=96 chẵn 

=> 3x+4y, x+2y cùng chẵn hoặc là một chẵn 1 lẻ ( 2)

Từ (1) và (2) => 3x+4y, x+2y cùng chẵn

Ta có bảng sau: 

3x+4y482244166128
x+2y248424616812
x44-9416-444-26-4-16
y-2171-634121614

Vậy ...

8 tháng 2 2021

x=4; y=1

19 tháng 3 2017

\(\sqrt{9x^2+33x+28}+5\sqrt{4x-3}=5\sqrt{3x+4}+\sqrt{12x^2+19x-21}\)

\(\Leftrightarrow\sqrt{\left(3x+4\right)\left(3x+7\right)}+5\sqrt{4x-3}=5\sqrt{3x+4}+\sqrt{\left(3x+7\right)\left(4x-3\right)}\)

\(\Leftrightarrow\sqrt{\left(3x+4\right)\left(3x+7\right)}-5\sqrt{3x+4}=\sqrt{\left(3x+7\right)\left(4x-3\right)}-5\sqrt{4x-3}\)

\(\Leftrightarrow\sqrt{3x+4}\left(\sqrt{3x+7}-5\right)=\sqrt{4x-3}\left(\sqrt{3x+7}-5\right)\)

\(\Leftrightarrow\sqrt{3x+4}\left(\sqrt{3x+7}-5\right)-\sqrt{4x-3}\left(\sqrt{3x+7}-5\right)=0\)

\(\Leftrightarrow\left(\sqrt{3x+7}-5\right)\left(\sqrt{3x+4}-\sqrt{4x-3}\right)=0\)

\(\Leftrightarrow\orbr{\begin{cases}\sqrt{3x+7}=5\\\sqrt{3x+4}=\sqrt{4x-3}\end{cases}}\)\(\Leftrightarrow\orbr{\begin{cases}3x+7=25\\3x+4=4x-3\end{cases}}\)

\(\Leftrightarrow\orbr{\begin{cases}x=6\\x=7\end{cases}}\) (thỏa mãn). Suy ra tổng các nghiệm của pt là \(6+7=13\)

1 tháng 11 2020

Bài 1 :

a) \(x^3-x^2-x-2=0\)

\(\Leftrightarrow x^3-2x^2+x^2-2x+x-2=0\)

\(\Leftrightarrow\left(x^3-2x^2\right)+\left(x^2-2x\right)+\left(x-2\right)=0\)

\(\Leftrightarrow x^2\left(x-2\right)+x\left(x-2\right)+\left(x-2\right)=0\)

\(\Leftrightarrow\left(x-2\right)\left(x^2+x+1\right)=0\)(1)

Vì \(x^2+x+1=x^2+2.\frac{1}{2}.x+\frac{1}{4}+\frac{3}{4}=\left(x+\frac{1}{2}\right)^2+\frac{3}{4}\)

Vì \(\left(x+\frac{1}{2}\right)^2\ge0\forall x\)\(\Rightarrow\left(x+\frac{1}{2}\right)^2+\frac{3}{4}\ge\frac{3}{4}\forall x\)

\(\Rightarrow x^2+x+1\ge\frac{3}{4}\forall x\)(2)

Từ (1) và (2) \(\Rightarrow x-2=0\)\(\Leftrightarrow x=2\)

Vậy \(x=2\)

1 tháng 11 2020

Bài 2: 

\(2x^2+y^2-2xy+2y-6x+5=0\)

\(\Leftrightarrow x^2-2xy+y^2-2x+2y+1+x^2-4x+4=0\)

\(\Leftrightarrow\left(x^2-2xy+y^2\right)-\left(2x-2y\right)+1+\left(x^2-4x+4\right)=0\)

\(\Leftrightarrow\left(x-y\right)^2-2\left(x-y\right)+1+\left(x-2\right)^2=0\)

\(\Leftrightarrow\left(x-y-1\right)^2+\left(x-2\right)^2=0\)(1)

Vì \(\left(x-y-1\right)^2\ge0\forall x,y\)\(\left(x-2\right)^2\ge0\forall x\)

\(\Rightarrow\left(x-y-1\right)^2+\left(x-2\right)^2\ge0\forall x,y\)(2)

Từ (1) và (2) \(\Rightarrow\left(x-y-1\right)^2+\left(x-y\right)^2=0\)

\(\Leftrightarrow\hept{\begin{cases}x-y-1=0\\x-2=0\end{cases}}\Leftrightarrow\hept{\begin{cases}y=x-1\\x=2\end{cases}}\Leftrightarrow\hept{\begin{cases}y=1\\x=2\end{cases}}\)

Vậy \(x=2\)và \(y=1\)