Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.
\(a,=y\left(y-2\right)\\ b,=3x\left(x^2-2x+1\right)=3x\left(x-1\right)^2\\ c,=\left(y-1\right)\left(27x^2+9x^3\right)=9x^2\left(x+3\right)\left(y-1\right)\\ d,=y\left(y^2-2y+1\right)=y\left(y-1\right)^2\\ e,=x\left(x^2+6x+9\right)=x\left(x+3\right)^2\\ f,=x\left(x^2-2xy+y^2\right)=x\left(x-y\right)^2\\ g,=\left(2-x\right)\left(x+1\right)\\ h,=\left(x-1\right)\left(3x-6\right)=3\left(x-1\right)\left(x-2\right)\)
a: =y(y-2)
b: \(=3x^2\left(x^2-2x+1\right)=3x^2\left(x-1\right)^2\)
d: \(=y\left(y^2-2y+1\right)=y\left(y-1\right)^2\)
\(3x^2.\left(ax^2-2bx-3c\right)=3x^4-12x^3+27x^2\)
\(\Leftrightarrow3ax^4-6bx^3-9cx^2=3x^4-12x^3+27x^2\)
\(\Leftrightarrow\hept{\begin{cases}3a=3\\-6b=-12\\-9c=27\end{cases}\Leftrightarrow\hept{\begin{cases}a=1\\b=2\\c=-3\end{cases}}}\)
Vậy a=1;b=2;c=-3
Đề sai mình sửa thành:\(3x^2\left(ax^2-abcx-c\right)=3x^4-12x^3+27x^2\)
<=>\(3ax^4-3abcx^3-3cx^2=3x^4-12x^3+27x^2\)
Để PT nghiệm đúng với mọi x thì
\(\left\{{}\begin{matrix}3a=3\\-3abc=-12\\-3c=27\end{matrix}\right.\)<=>\(\left\{{}\begin{matrix}a=1\\b=-\dfrac{9}{4}\\c=-9\end{matrix}\right.\)