K
Khách

Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.

20 tháng 3 2017

hình như đề có vấn đề x^2-5x+2 ko phân tích thành nhân tử đc

20 tháng 3 2017

a+b=-52 thưa bạn a=-14,b=-38

14 tháng 8 2017

My Nguyễn ơi,bạn truy cập vào đường link này để tìm câu hỏi tương tự của câu a/Bài 1 nhé

https://vn.answers.yahoo.com/question/index?qid=20110206184834AAokV5m&sort=N

14 tháng 8 2017

Ko biết đợi đứa khác đê

31 tháng 10 2017

Ta có: x2 - 1 = (x - 1)(x + 1)

Để f(x) \(⋮\) g(x) thì \(f\left(x\right)⋮\left\{{}\begin{matrix}\left(x-1\right)\left(1\right)\\\left(x+1\right)\left(2\right)\end{matrix}\right.\)

Từ (1) => \(f\left(1\right)=0\Rightarrow-2+a+2b=0\) (*)

Từ (2) => \(f\left(-1\right)=0\Rightarrow4+2b-a=0\) (**)

Trừ (*) cho (**) được:

\(-2+a+2b-4-2b+a=0\)

\(\Rightarrow2a-6=0\)

\(\Rightarrow a=3\)

Khi đó b = \(\dfrac{-1}{2}\).

24 tháng 2 2021

Vì \(f\left(x\right)⋮x-2;f\left(x\right):x^2-1\) dư 1\(\Rightarrow\left\{{}\begin{matrix}f\left(x\right)=g\left(x\right)\cdot\left(x-2\right)\\f\left(x\right)=q\left(x\right)\left(x^2-1\right)+x=q\left(x\right)\left(x-1\right)\left(x+1\right)+x\end{matrix}\right.\) 

\(\Rightarrow\left\{{}\begin{matrix}f\left(2\right)=0\\f\left(1\right)=1\\f\left(-1\right)=-1\end{matrix}\right.\) \(\Rightarrow\left\{{}\begin{matrix}32+4a+2b+c=0\\2+a+b+c=1\\2+a-b+c=-1\end{matrix}\right.\)

\(\Rightarrow\left\{{}\begin{matrix}4a+2b+c=-32\left(1\right)\\a+b+c=-1\left(2\right)\\a-b+c=-3\left(3\right)\end{matrix}\right.\)

 Trừ từng vế của (2) cho (3) ta được:

\(\Rightarrow2b=2\Rightarrow b=1\)

Thay b=1 vào lần lượt (1) ,(2),(3) ta được:

\(\Rightarrow\left\{{}\begin{matrix}4a+2+c=-32\\a+1+c=-1\\a-1+c=-3\end{matrix}\right.\Leftrightarrow\left\{{}\begin{matrix}4a+c=-34\\a+c=-2\\a+c=-2\end{matrix}\right.\) \(\Leftrightarrow\left\{{}\begin{matrix}4a+c=-34\left(4\right)\\a+c=-2\left(5\right)\end{matrix}\right.\)

Trừ từng vế của (4) cho (5) ta được:

\(\Rightarrow3a=-32\Rightarrow a=-\dfrac{32}{3}\Rightarrow c=-2+\dfrac{32}{3}=\dfrac{26}{3}\) Vậy...

10 tháng 10 2016

Cách 1. Sử dụng định lí Bezout : 

Vì f(x) chia hết cho g(x) nên ta có thể biểu diễn thành : \(f\left(x\right)=g\left(x\right).g'\left(x\right)\) với g'(x) là đa thức thương

hay \(f\left(x\right)=\left(x-1\right)\left(x-2\right).g'\left(x\right)\)

Khi đó , theo định lí Bezout ta có \(\hept{\begin{cases}f\left(1\right)=a+b=0\\f\left(2\right)=7+4a+2b=0\end{cases}\Leftrightarrow}\hept{\begin{cases}a+b=0\\4a+2b=-7\end{cases}\Leftrightarrow}\hept{\begin{cases}a=-\frac{7}{2}\\b=\frac{7}{2}\end{cases}}\)

Cách 2. Sử dụng HỆ SỐ BẤT ĐỊNH

Giả sử \(f\left(x\right)=x^3+ax^2+bx-1=\left(x^2-3x+2\right).\left(x+c\right)\)(Vì bậc cao nhất của f(x) là 3)

\(\Rightarrow x^3+ax^2+bx-1=x^3+x^2\left(c-3\right)+x\left(2-3c\right)+2c\)

Theo hệ số bất định thì \(\hept{\begin{cases}2c=-1\\2-3c=b\\c-3=a\end{cases}}\Leftrightarrow\hept{\begin{cases}c=-\frac{1}{2}\\b=\frac{7}{2}\\a=-\frac{7}{2}\end{cases}}\)

10 tháng 10 2016

Lại lỗi dấu ngoặc nhọn =.="

5 tháng 11 2017

a=3

b=1

T giải = pp giá trị riêng nhé :v

Gọi đa thức thương của phép chia là đa thức Q(x)

f(x) = x4 - 3x3 + bx2 + ax + b = (x2 - 1) . Q(x)

= (x - 1) (x +1) . Q(x)

* Tại x = 1 Ta có :

12 - 3.13 + b.12 + a.1 + b = 0

1 - 3 + b +a +b = 0

-2 +2b +a = 0

2b+a = 2

2b = 2 - a (1)

* Tại x = -1 Ta có :

(-1)2 - 3. (-1)2 + b.(-1)2 + a. (-1) +b = 0

1 + 3 +b -a+b =0

4 +2b -a = 0

2b -a = -4

2b = -4 +a (2)

Từ (1) và (2) => 2 - a = -4 +a

2 +4 = a+a

2a = 6

=> a = 3

Từ (1) => 2b = 2 -a = 2 - 3 = -1 <=> b = \(\dfrac{-1}{2}\)

Vậy a = 3 ; b = \(\dfrac{-1}{2}\)