Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.
Theo bài ra:
\(f\left(x\right)=\left(g\left(x\right)\right)^2\)
<=> \(x^4+ax^3+bx^2-8x+4=\left(x^2+cx+d\right)^2\)
<=> \(x^4+ax^3+bx^2-8x+4=x^4+c^2x^2+d^2+2.x^2.cx+2.cx.d+2x^2.d\)
<=> \(x^4+ax^3+bx^2-8x+4=x^4+2cx^3+\left(c^2+2d\right)x^2+2cdx+d^2\)
Cân bằng hệ số hai vế ta có:
\(\hept{\begin{cases}a=2c\\b=c^2+2d\\-8=2cd;4=d^2\end{cases}}\)
=> Tìm được a, b, c, d.
Ta có \(x^4+ax^3+bx^2-8x+4=\left(x^2+cx+d\right)^2\).
Hệ số tự do của \(\left(x^2+cx+d\right)^2\) là \(d^2\).
Vì vậy \(d^2=4\Leftrightarrow d=\pm2\).
Với \(d=2\) ta có:
\(x^4+ax^3+bx^2-8x+4=\left(x^2+cx+2\right)^2\).
Áp dụng hằng đẳng thức \(\left(a+b+c\right)^2=a^2+b^2+c^2+2ab+2bc+2ac\) ta có:
\(\left(x^2+cx+2\right)^2=x^4+c^2x^2+4+2cx^3+4cx+4x^2\)\(=x^4+2cx^3+x^2\left(c^2+4\right)+4cx+4\).
So sánh \(x^4+2cx^3+x^2\left(c^2+4\right)+4cx+4\) với \(x^4+ax^3+bx^2-8x+4\) ta được:
\(\hept{\begin{cases}2c=a\\c^2+4=b\\4c=-8\end{cases}}\)\(\Leftrightarrow\hept{\begin{cases}c=-2\\a=-4\\b=8\end{cases}}\).
Tương tự cho trường hợp \(d=-2\).
\(\left(x^2+cx+d\right)^2=x^4+c^2x^2+d^2+2x^3c+2x^2d+2cdx\)
vì \(x^4+ax^3+bx^2-8x+4\: \)là bình phương đúng của \(x^2+cx+d\) nên:
\(x^4+ax^3+bx^2-8x+4=x^4+2cx^3+\left(2d+c^2\right)x^2+2cdx+d^2\)
\(\Rightarrow\left\{{}\begin{matrix}a=2c\\b=2d+c^2\\2cd=-8\\4=d^2\end{matrix}\right.\Rightarrow\left\{{}\begin{matrix}a=-4\\b=8\\c=-2\\d=2\end{matrix}\right.\)
vậy các số cần tìm là a=-4; b=8; c=-2; d=2
Tam giác Pascal
Hằng đẳng thức Phần hệ số
(A+B)2=A2+2AB+B2 1 2 1
(A+B)3=A3+3A2B+3AB2+B3 1 3 3 1
(A+B)4=A4+4A3B+6A2B2+4AB3+B4 1 4 6 4 1
Cứ theo quy luật đó bạn sẽ tính đc các hằng đẳng thức(A+B)5;.......
x4+a.x3+bx2-8x+1=x4+ax3+bx2-4.2.x+1=(x+1)4
=>a=4;b=6
Quy luật của tam giác Pascal nếu k hiểu thì kết bạn r gửi tin nhắn qua cho mình r mình sẽ nói thêm cho
Chúc bạn học tốt
làm ơn giúp mình bài toán hình phần d với cảm ơn nhiều( hình lớp 7 đó)
a/ Giả sử \(x^4+2x^3+3x^2+ax+b=\left(x^2+cx+d\right)^2\)
\(\Leftrightarrow x^4+2x^3+3x^2+ax+b=x^4+c^2x^2+d^2+2x^3c+2xcd+2dx^2\)
\(\Leftrightarrow x^3\left(2-2c\right)+x^2\left(3-c^2-2d\right)+x\left(a-2cd\right)+\left(b-d^2\right)=0\)
Áp dụng hệ số bất định, ta có :
\(\begin{cases}2-2c=0\\3-c^2-2d=0\\a-2cd=0\\b-d^2=0\end{cases}\) \(\Leftrightarrow\begin{cases}a=2\\b=1\\c=1\\d=1\end{cases}\)
Vậy : \(x^4+2x^3+3x^2+2x+1=\left(x^2+x+1\right)^2\)
b/ Tương tự