K
Khách

Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.

24 tháng 2 2022

Theo định lý Be-du thì số dư của \(P(x)=ax^3+bx^2+c\) khi chia cho \(x+2\) là:

\(P(-2)=-8a+4b+c=0\) (1)

Gọi đa thức thương khi chia $P(x)$ cho\(x^2-1\) là \(Q(x)\). Khi đó ta có:

\(ax^3+bx^2+c=(x^2-1)Q(x)+x+5\)

Thay \(x=\pm 1\) ta thu được:

\(\left\{\begin{matrix} a+b+c=0.Q(1)+6=6(2)\\ -a+b+c=0.Q(-1)+4=4(3)\end{matrix}\right.\)

Từ \((1)(2)(3)\Rightarrow \left\{\begin{matrix} a=1\\ b=1\\ c=4\end{matrix}\right.\)

Vậy \((a,b,c)=(1,1,4)\)

24 tháng 2 2022

Sửa du thành đu

22 tháng 10 2018

undefinedundefinedMời các god xơi câu c

11 tháng 8 2020

Gọi thương của đa thức f(x) và x+2 là P(x),thương của đa thức f(x) và x^2-1 là Q(x)

Theo đề ra,ta có:\(\left\{{}\begin{matrix}f\left(x\right)=\left(x+2\right).P\left(x\right)\\f\left(x\right)=\left(x^2-1\right).Q\left(x\right)+\left(x+5\right)\end{matrix}\right.\)

Ta thấy 2 đẳng thức trên thỏa mãn với mọi x thuôc R nên ta có

Nếu x=-2 thì \(f\left(-2\right)=\left(-2+2\right).P\left(-2\right)=0\)

\(\Rightarrow-8a+4b+c=0\left(1\right)\)

Nếu x=1 thì \(f\left(1\right)=\left(1^2-1\right).Q\left(1\right)+\left(1+5\right)=6\Rightarrow a+b+c=6\left(2\right)\)

Nếu x=-1 thì \(f\left(-1\right)=\left[\left(-1\right)^2-1\right].Q\left(-1\right)+\left(-1+5\right)=4\Rightarrow-a+b+c=4\left(3\right)\)

Lấy (2) trừ (3)

\(\Rightarrow2a=2\Rightarrow a=1\)

\(\Rightarrow\left\{{}\begin{matrix}b+c=5\\4b+c=8\end{matrix}\right.\)

\(\Rightarrow\left(4b+c\right)-\left(b+c\right)=8-5\Rightarrow3b=3\Rightarrow b=1\Rightarrow c=4\)

Vậy a=b=1;c=4

28 tháng 12 2017

Do \(\left(ax^3+bx^2+c\right)⋮\left(x+2\right)\Rightarrow ax^3+bx^2+c=\left(x+2\right).Q\left(x\right)\)(*)

Thay x = - 2 vào (*) ta được :\(-8a+4b+c=0\)(1)

Do \(\left(ax^3+bx^2+c\right):\left(x^2-1\right)\text{dư}\text{ }x+5\)   \(\Rightarrow\left(ax^{\:3}+bx^2+c-x-5\right)⋮\left(x^2-1\right)\left[\text{ }\right]\)

\(\Rightarrow ax^3+bx^2-x+c-5=\left(x^2-1\right)G\left(x\right)\)(**)

Thay x = 1 vào (**) ta đc \(a+b+c-6=0\Rightarrow a+b+c=6\)(2)

Thay \(x=-1\) vào (**) ta đc \(-a+b-c-4=0\Leftrightarrow-a+b-c=4\)(3)

Từ (1);(2);(3) ta có phương trình : \(\hept{\begin{cases}-8a+4b+c=0\\a+b+c=6\\-a+b-c=4\end{cases}\Rightarrow\hept{\begin{cases}a=\frac{7}{3}\\b=5\\c=-\frac{4}{3}\end{cases}}}\)