K
Khách

Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.

NV
25 tháng 2 2020

Đáp án D đúng

NV
25 tháng 2 2020

Vì cả 3 giới hạn kia đều ko tồn tại, chỉ có giới hạn cuối là tồn tại (do hàm sin, cos là hàm tuần hoàn có chu kì, do đó giới hạn vô cực ko tồn tại)

23 tháng 12 2023

\(\lim\limits_{x\rightarrow0}\left(\dfrac{1}{x}-\dfrac{1}{x^2}\right)\)

\(=\lim\limits_{x\rightarrow0}\dfrac{x-1}{x^2}\)

\(=-\infty\) vì \(\left\{{}\begin{matrix}\lim\limits_{x\rightarrow0}x-1=0-1=-1< 0\\\lim\limits_{x\rightarrow0}x^2=0^2=0\end{matrix}\right.\)

24 tháng 1 2021

a/ \(=\lim\limits_{h\rightarrow0}\dfrac{2x^3+6x^2h+6xh^2+2h^3-2x^3}{h}\)

\(=\lim\limits_{h\rightarrow0}\dfrac{6xh^2+6x^2h+2h^3}{h}=\lim\limits_{h\rightarrow0}\left(6xh+6x^2+2h^2\right)=6x^2\)

b/ Xet day :\(S=x+x^2+....+x^{2021}\)

Day co \(\left\{{}\begin{matrix}u_1=x\\q=x\end{matrix}\right.\Rightarrow S=u_1.\dfrac{q^{2021}-1}{q-1}=x.\dfrac{x^{2021}-1}{x-1}\)

\(\Rightarrow\lim\limits_{x\rightarrow1}\dfrac{\dfrac{x^{2022}-x}{x-1}-2021}{x-1}=\lim\limits_{x\rightarrow1}\dfrac{x^{2022}-x-2021x+2021}{\left(x-1\right)^2}\)

\(=\lim\limits_{x\rightarrow1}\dfrac{\dfrac{x^{2022}}{x^2}-\dfrac{x}{x^2}-\dfrac{2021x}{x^2}+\dfrac{2021}{x^2}}{\dfrac{x^2}{x^2}-\dfrac{2x}{x^2}+\dfrac{1}{x^2}}=\lim\limits_{x\rightarrow1}\dfrac{x^{2020}}{1}=1\)

 

 

 

24 tháng 1 2021

Lam lai cau b, hinh nhu bi nham sang dang \(\dfrac{\infty}{\infty}\) roi

Xet day: \(S=x+x^2+...+x^{2021}\)

\(\Rightarrow S=x.\dfrac{x^{2021}-1}{x-1}=\dfrac{x^{2022}-x}{x-1}\)

\(\Rightarrow\lim\limits_{x\rightarrow1}\dfrac{x^{2022}-2022x+2021}{\left(x-1\right)^2}\)

L'Hospital: \(\Rightarrow...=\lim\limits_{x\rightarrow1}\dfrac{2022x^{2021}-2022}{2\left(x-1\right)}=\lim\limits_{x\rightarrow1}\dfrac{2022.2021.x^{2020}}{2}=2043231\)

Is that true :v?

 

22 tháng 12 2023

\(\lim\limits_{x\rightarrow0}\dfrac{\sqrt{x^3+1}-1}{x^2+x}\\ =\lim\limits_{x\rightarrow0}\dfrac{x\sqrt{x+\dfrac{1}{x^2}}-1}{x\left(x+1\right)}\\ =\lim\limits_{x\rightarrow0}\dfrac{x\left(\sqrt{x+\dfrac{1}{x^2}}-\dfrac{1}{x}\right)}{x\left(x+1\right)}\\ =\dfrac{\sqrt{x+\dfrac{1}{x^2}}-\dfrac{1}{x}}{x+1}\\ =\dfrac{\sqrt{x}}{x+1}=\dfrac{0}{0+1}=0\)

22 tháng 12 2023

https://hoc24.vn/cau-hoi/limdfracsqrtn31-1n2n.8702249266976

NV
25 tháng 2 2020

Đáp án A

Đó là nguyên lý của giới hạn kẹp

\(\left|f\left(x\right)\right|\le\left|x\right|\Rightarrow\lim\limits_{x\rightarrow0}f\left(x\right)=\lim\limits_{x\rightarrow0}x=0\)

NV
10 tháng 3 2021

Chọn \(f\left(x\right)=5x+5\)

Khi đó: \(\lim\limits_{x\rightarrow1}\dfrac{5x-5}{\left(\sqrt{x}-1\right)\left(\sqrt{20x+29}+3\right)}=\lim\limits_{x\rightarrow1}\dfrac{5\left(\sqrt{x}+1\right)}{\sqrt{20x+29}+3}=\dfrac{10}{7+3}=1\)

28 tháng 4 2017

Tôi chẳng thể hiểu nổi

24 tháng 5 2021

\(lim_{x\rightarrow0+}\frac{\left(1+x\right)^n-1}{x}\)   

\(=lim_{x\rightarrow0+}\frac{\left(1+x\right)^n-1^n}{x}\)   

\(=lim_{x\rightarrow0+}\frac{\left(1+x-1\right)\left[\left(1+x\right)^{n-1}+\left(1+x\right)^{n-2}+...+\left(1+x\right)^0\right]}{x}\)   

\(=lim_{x\rightarrow0}\left[\left(1+x\right)^{n-1}+\left(1+x\right)^{n-2}+...\left(1+x\right)^0\right]\)    

\(=1^{n-1}+1^{n-2}+...+1^0\) 

Số số hạng 

\(\left(n-1-0\right):1+1=n\)   

Do mọi số hạng đều bằng 1 nên tổng là 

\(1\cdot n=n\)