K
Khách

Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.

5 tháng 5 2018

Giải bài 1 trang 87 SGK Đại Số 10 | Giải toán lớp 10

Vậy tập giá trị của x thỏa mãn điều kiện xác định là D = (–∞; 1] \ {–4}.

6 tháng 9 2017

Giải bài 1 trang 87 SGK Đại Số 10 | Giải toán lớp 10

BPT xác định khi x + 1 ≠ 0 ⇔ x ≠ –1.

Vậy tập giá trị của x thỏa mãn điều kiện xác định là D = R\{–1}

21 tháng 9 2018

Giải bài 1 trang 87 SGK Đại Số 10 | Giải toán lớp 10

BPT xác định khi

Giải bài 1 trang 87 SGK Đại Số 10 | Giải toán lớp 10

Vậy tập giá trị của x thỏa mãn điều kiện xác định là D = R\{–2; 1; 2; 3}

7 tháng 2 2018

Giải bài 1 trang 87 SGK Đại Số 10 | Giải toán lớp 10

Vậy tập giá trị của x thỏa mãn điều kiện xác định là D = R\{0; –1}

8 tháng 4 2017

a) ĐKXĐ: D = {x ∈ R/x ≠ 0 và x + 1 ≠ 0} = R\{0;- 1}.

b) ĐKXĐ: D = {x ∈ R/x2 - 4 ≠ 0 và x2 - 4x + 3 ≠ 0} = R\{±2; 1; 3}.

c) ĐKXĐ: D = R\{- 1}.

d) ĐKXĐ: D = {x ∈ R/x + 4 ≠ 0 và 1 - x ≥ 0} = (-∞; - 4) ∪ (- 4; 1].

NV
22 tháng 7 2021

BPT \(x^2-2mx+m^2-m+3\le0\) có tập nghiệm S đã cho nên \(x_1;x_2\) là nghiệm:

\(x^2-2mx+m^2-m+3=0\) với \(\Delta=m^2-\left(m^2-m+3\right)=m-3\ge0\)

Theo hệ thức Viet: \(\left\{{}\begin{matrix}x_1+x_2=2m\\x_1x_2=m^2-m+3\end{matrix}\right.\)

Mặt khác, do \(x_1\) là nghiệm nên: \(x_1^2=2mx_1-m^2+m-3\)

Thay vào bài toán:

\(\sqrt{2mx_1-m^2+m-3+2mx_2+m^2-m+3}=\left|m-9\right|\)

\(\Leftrightarrow\sqrt{2m\left(x_1+x_2\right)}=\left|m-9\right|\)

\(\Leftrightarrow\sqrt{4m^2}=\left|m-9\right|\)

\(\Leftrightarrow4m^2=m^2-18m+81\Rightarrow\left[{}\begin{matrix}m=3\\m=-9\left(loại\right)\end{matrix}\right.\)

16 tháng 12 2019

Chọn D.

Với m = 1 hệ bất phương trình trở thành:

Đề kiểm tra 15 phút Đại số 10 Chương 4 có đáp án (Đề 2) Đề kiểm tra 15 phút Đại số 10 Chương 4 có đáp án (Đề 2)

Vậy tập nghiệm hệ bất phương trình là

Đề kiểm tra 15 phút Đại số 10 Chương 4 có đáp án (Đề 2)

NV
27 tháng 3 2023

\(\Delta'=\left(m-1\right)^2+m^3-\left(m+1\right)^2=m^3-4m\ge0\) \(\Rightarrow\left[{}\begin{matrix}m\ge2\\-2\le m\le0\end{matrix}\right.\)

Theo hệ thức Viet:  \(\left\{{}\begin{matrix}x_1+x_2=2\left(m-1\right)\\x_1x_2=-m^3+\left(m+1\right)^2\end{matrix}\right.\)

Do \(x_1+x_2\le4\Rightarrow m-1\le2\Rightarrow m\le3\)

\(\Rightarrow\left[{}\begin{matrix}2\le m\le3\\-2\le m\le0\end{matrix}\right.\)

\(P=x_1^3+x_2^3+3x_1x_2\left(x_1+x_2\right)+8x_1x_2\)

\(=\left(x_1+x_2\right)^3+8x_1x_2\)

\(=8\left(m-1\right)^3+8\left[-m^3+\left(m+1\right)^2\right]\)

\(=8\left(5m-2m^2\right)\)

\(P=8\left(5m-2m^2-2+2\right)=16-8\left(m-2\right)\left(2m-1\right)\le16\)

\(P_{max}=16\) khi \(m=2\)

\(P=8\left(5m-2m^2+18-18\right)=8\left(9-2m\right)\left(m+2\right)-144\ge-144\)

\(P_{min}=-144\) khi \(m=-2\)

22 tháng 7 2018

Chọn D

Ta có: ( 2m+1) x+ m-5  0 tương đương: ( 2m+ 1) x≥ 5- m  (*)

+ TH1: Với m> -1/2  , bất phương trình (*) trở thành: 

Tập nghiệm của bất phương trình là 

Để bất phương trình đã cho nghiệm đúng với 0< x< 1 thì 

Hay 

+ TH2: m= -1/ 2, bất phương trình (*) trở thành: 0x  5+ 1/2

Bất phương trình vô nghiệm. Nên không có m thỏa mãn

+ TH3: Với m< -1/ 2 , bất phương trình (*) trở thành: 

Tập nghiệm của bất phương trình là 

Để bất phương trình đã cho nghiệm đúng với 0< x < 1thì 

Hay 

Kết hợp điều kiện  m< -1/ 2  nên không có m  thỏa mãn.

Vậy với m ≥ 5, bất phương trình đã cho nghiệm đúng với mọi x: 0< x< 1

18 tháng 5 2022

    `[2-x]/[x+3] > x+1`    `ĐK: x \ne -3`

 `=>` Loại đ/á `\bb A`

Thay `x=-1` vào bất ptr có: `1,5 > 0` (Luôn đúng) `->\bb B` t/m

Thay `x=2` vào bất ptr có: `0 > 3` (Vô lí) `->\bb C` loại

Thay `x=0` vào bất ptr có: `2/3 > 1` (Vô lí) `->\bb D` loại

______________________________________________________

      `=>` Chọn `\bb B`