Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.
+)\(A=\sqrt{x^2-3}\) ,Để biểu thức có nghĩa
\(=>x^2-3>=0< =>x^2>=3.\)\(< =>-\sqrt{3}< =x< =\sqrt{3}\)
+)\(B=\frac{1}{\sqrt{x^2}+4x-5}\)
xét 2 th
th1)x>=0
=>\(B=\frac{1}{x+4x-5}=\frac{1}{5x-5}\)
để biểu thức có nghĩa =>\(5x-5\)khác 0<=>x khác 1
th2>x<0
=>\(B=\frac{1}{-x+4x-5}=\frac{1}{3x-5}\)
biểu thức có nghĩa =>3x-5 khác 0<=>x khác \(\frac{5}{3}\)
vậy với x khác 1, \(\frac{5}{3}\) thì B có nghĩa
+) \(C=\frac{1}{\sqrt{x-\sqrt{2x-1}}}\)
để C có nghĩa
=>\(\sqrt{x-\sqrt{2x-1}}>0< =>x>\sqrt{2x-1}\),\(2x-1>=0< =>x^2>2x-1,x>=\frac{1}{2}\)(1)
=>\(x^2-2x+1>0< =>\left(x-1\right)^2>0=>\orbr{\begin{cases}x>1\\x< 1\end{cases}}\)(2)
từ (1) và (2)=>x>1
vậy với x>1 thì C có nghĩa
+)D=\(\frac{1}{1-\sqrt{x^2}-3}\)
xét 2 th
th1)x>=0
=>\(D=\frac{1}{1-x-3}=\frac{1}{-x-2}\)
để D có nghĩa =>-x-2 khác 0<=>x khác -2
th2)x<0
=>\(D=\frac{1}{1-\left(-x\right)-3}=\frac{1}{x-2}\)
Để D có nghĩa => x-2 khác 0<=> x khác 2
Vậy với x khác 2,-2 thì D có nghĩa
1) Khi x = 49 thì:
\(A=\frac{4\sqrt{49}}{\sqrt{49}-1}=\frac{4\cdot7}{7-1}=\frac{28}{6}=\frac{14}{3}\)
2) Ta có:
\(B=\frac{1}{\sqrt{x}+1}+\frac{\sqrt{x}}{\sqrt{x}-1}+\frac{2}{x-1}\)
\(B=\frac{\sqrt{x}-1+x+\sqrt{x}+2}{\left(\sqrt{x}-1\right)\left(\sqrt{x}+1\right)}\)
\(B=\frac{x+2\sqrt{x}+1}{\left(\sqrt{x}-1\right)\left(\sqrt{x}+1\right)}=\frac{\left(\sqrt{x}+1\right)^2}{\left(\sqrt{x}-1\right)\left(\sqrt{x}+1\right)}\)
\(B=\frac{\sqrt{x}+1}{\sqrt{x}-1}\)
c) \(P=A\div B=\frac{4\sqrt{x}}{\sqrt{x}-1}\div\frac{\sqrt{x}+1}{\sqrt{x}-1}=\frac{4\sqrt{x}}{\sqrt{x}+1}\)
Ta có: \(P\left(\sqrt{x}+1\right)=x+4+\sqrt{x-4}\)
\(\Leftrightarrow\frac{4\sqrt{x}\left(\sqrt{x}+1\right)}{\sqrt{x}+1}=x+4+\sqrt{x-4}\)
\(\Leftrightarrow4\sqrt{x}=x+4+\sqrt{x-4}\)
\(\Leftrightarrow\left(\sqrt{x}-2\right)^2+\sqrt{x-4}=0\)
Mà \(VT\ge0\left(\forall x\ge0,x\ne1\right)\)
\(\Rightarrow\hept{\begin{cases}\left(\sqrt{x}-2\right)^2=0\\\sqrt{x-4}=0\end{cases}}\Leftrightarrow\hept{\begin{cases}\sqrt{x}=2\\x-4=0\end{cases}}\Rightarrow x=4\)
Vậy x = 4
\(a,\hept{\begin{cases}x\ge1\\x\le3\end{cases}}\)
\(1\le x\le3\)thì biểu thức được xác định
\(b,\frac{\sqrt{x-2}}{\sqrt{2x-1}}\)
để biểu thức đc xác định thì
\(\sqrt{x-2}\ge0\)
\(x\ge2\)
\(\sqrt{2x-1}\ne0< =>\sqrt{2x-1}>0\)
\(x>\frac{1}{2}\)
kết hợp điều kiện thì \(x\ge2\)
\(C=\frac{\sqrt{x}-1+\sqrt{x}+1}{x-1}.\frac{2}{\sqrt{x}}\)
\(C=\frac{2\sqrt{x}}{x-1}.\frac{2}{\sqrt{x}}\)
\(C=\frac{4}{x-1}\)
\(< =>x\ne0\)để biểu thức đc xđ