K
Khách

Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.

1. Cho biểu thức:\(C=\frac{3x+\sqrt{9x}-3}{x+\sqrt{x}-2}-\frac{\sqrt{x}+\:1}{\sqrt{x}+\:2}+\frac{\sqrt{x}+2}{1-\sqrt{x}}\)    a) Tìm điều kiện của x để C có nghĩa.    b) Rút gọn C.    c) Tìm các giá trị nguyên của x để giá trị C là số ngueyeenn.2. Cho biểu thức: \(A=x^2-3x\sqrt{y}+2y\)    a) Phân tích A thành nhân tử.    b) Tính giá trị của A khi: \(x=\frac{1}{\sqrt{6}-2}\); \(y=\frac{1}{9+4\sqrt{5}}\)3. Rút gọn rồi tính giá trị...
Đọc tiếp

1. Cho biểu thức:

\(C=\frac{3x+\sqrt{9x}-3}{x+\sqrt{x}-2}-\frac{\sqrt{x}+\:1}{\sqrt{x}+\:2}+\frac{\sqrt{x}+2}{1-\sqrt{x}}\)

    a) Tìm điều kiện của x để C có nghĩa.

    b) Rút gọn C.

    c) Tìm các giá trị nguyên của x để giá trị C là số ngueyeenn.

2. Cho biểu thức: \(A=x^2-3x\sqrt{y}+2y\)

    a) Phân tích A thành nhân tử.

    b) Tính giá trị của A khi: \(x=\frac{1}{\sqrt{6}-2}\)\(y=\frac{1}{9+4\sqrt{5}}\)

3. Rút gọn rồi tính giá trị của biểu thức tại \(x=3\)

\(M=\frac{\sqrt{x-2\sqrt{2}}}{\sqrt{x^2-4x\sqrt{2}+8}}-\frac{\sqrt{x+2\sqrt{2}}}{\sqrt{x^2+4x\sqrt{2}+8}}\)

4. Cho biểu thức: ​\(\frac{\frac{2\sqrt{x}}{\sqrt{x}+3}+\frac{\sqrt{x}}{\sqrt{x}-3}-\frac{3x+3}{x-9}}{\frac{2\sqrt{x}-2}{\sqrt{x}-3}-1}\)với \(x\ge0\)và \(x\:\ne9\)

    a) Rút gọn P.

    b) Tìm giá trị của x ​để \(P\:< -\frac{1}{2}\)

    c) Tìm giá trị của x ​để P có giá trị nhỏ nhất.

5. Cho biểu thức:

\(Q=\frac{2\sqrt{x}-9}{x-5\sqrt{x}+6}-\frac{\sqrt{x}+3}{\sqrt{x}-2}-\frac{2\sqrt{x}+1}{3-\sqrt{x}}\)

    a) Tìm giá trị của x để Q có nghĩa.

    b) Rút gọn Q.

    c) Tìm giá trị của của x để Q có giá trị nguyên.

4
11 tháng 5 2017

moi tay

8 tháng 6 2017

giải giùm mình bài 5 với

19 tháng 5 2017

+)\(A=\sqrt{x^2-3}\) ,Để biểu thức có nghĩa

\(=>x^2-3>=0< =>x^2>=3.\)\(< =>-\sqrt{3}< =x< =\sqrt{3}\)

+)\(B=\frac{1}{\sqrt{x^2}+4x-5}\)

xét 2 th 

th1)x>=0

=>\(B=\frac{1}{x+4x-5}=\frac{1}{5x-5}\)

để biểu thức có nghĩa =>\(5x-5\)khác 0<=>x khác 1

th2>x<0

=>\(B=\frac{1}{-x+4x-5}=\frac{1}{3x-5}\)

biểu thức có nghĩa =>3x-5 khác 0<=>x khác \(\frac{5}{3}\)

vậy với x khác 1, \(\frac{5}{3}\) thì B có nghĩa

+) \(C=\frac{1}{\sqrt{x-\sqrt{2x-1}}}\)

để C có nghĩa 

=>\(\sqrt{x-\sqrt{2x-1}}>0< =>x>\sqrt{2x-1}\),\(2x-1>=0< =>x^2>2x-1,x>=\frac{1}{2}\)(1)

=>\(x^2-2x+1>0< =>\left(x-1\right)^2>0=>\orbr{\begin{cases}x>1\\x< 1\end{cases}}\)(2)

từ (1) và (2)=>x>1

vậy với x>1 thì C có nghĩa

+)D=\(\frac{1}{1-\sqrt{x^2}-3}\)

xét 2 th

th1)x>=0

=>\(D=\frac{1}{1-x-3}=\frac{1}{-x-2}\)

để D có nghĩa =>-x-2 khác 0<=>x khác -2

th2)x<0

=>\(D=\frac{1}{1-\left(-x\right)-3}=\frac{1}{x-2}\)

Để D có nghĩa => x-2 khác 0<=> x khác 2

Vậy với x khác 2,-2 thì D có nghĩa

19 tháng 5 2017

mình muốn trả lời nhưng mình ko biết

14 tháng 5 2021

Em gửi ảnh ạ !

14 tháng 5 2021

Em gửi ảnh trên ạ !!!!!

14 tháng 5 2021

1) Khi x = 49 thì:

\(A=\frac{4\sqrt{49}}{\sqrt{49}-1}=\frac{4\cdot7}{7-1}=\frac{28}{6}=\frac{14}{3}\)

2) Ta có:

\(B=\frac{1}{\sqrt{x}+1}+\frac{\sqrt{x}}{\sqrt{x}-1}+\frac{2}{x-1}\)

\(B=\frac{\sqrt{x}-1+x+\sqrt{x}+2}{\left(\sqrt{x}-1\right)\left(\sqrt{x}+1\right)}\)

\(B=\frac{x+2\sqrt{x}+1}{\left(\sqrt{x}-1\right)\left(\sqrt{x}+1\right)}=\frac{\left(\sqrt{x}+1\right)^2}{\left(\sqrt{x}-1\right)\left(\sqrt{x}+1\right)}\)

\(B=\frac{\sqrt{x}+1}{\sqrt{x}-1}\)

c) \(P=A\div B=\frac{4\sqrt{x}}{\sqrt{x}-1}\div\frac{\sqrt{x}+1}{\sqrt{x}-1}=\frac{4\sqrt{x}}{\sqrt{x}+1}\)

Ta có: \(P\left(\sqrt{x}+1\right)=x+4+\sqrt{x-4}\)

\(\Leftrightarrow\frac{4\sqrt{x}\left(\sqrt{x}+1\right)}{\sqrt{x}+1}=x+4+\sqrt{x-4}\)

\(\Leftrightarrow4\sqrt{x}=x+4+\sqrt{x-4}\)

\(\Leftrightarrow\left(\sqrt{x}-2\right)^2+\sqrt{x-4}=0\)

Mà \(VT\ge0\left(\forall x\ge0,x\ne1\right)\)

\(\Rightarrow\hept{\begin{cases}\left(\sqrt{x}-2\right)^2=0\\\sqrt{x-4}=0\end{cases}}\Leftrightarrow\hept{\begin{cases}\sqrt{x}=2\\x-4=0\end{cases}}\Rightarrow x=4\)

Vậy x = 4

17 tháng 6 2021

\(a,\hept{\begin{cases}x\ge1\\x\le3\end{cases}}\)

\(1\le x\le3\)thì biểu thức được xác định

\(b,\frac{\sqrt{x-2}}{\sqrt{2x-1}}\)

để biểu thức đc xác định thì

\(\sqrt{x-2}\ge0\)

\(x\ge2\)

\(\sqrt{2x-1}\ne0< =>\sqrt{2x-1}>0\)

\(x>\frac{1}{2}\)

kết hợp điều kiện thì \(x\ge2\)

\(C=\frac{\sqrt{x}-1+\sqrt{x}+1}{x-1}.\frac{2}{\sqrt{x}}\)

\(C=\frac{2\sqrt{x}}{x-1}.\frac{2}{\sqrt{x}}\)

\(C=\frac{4}{x-1}\)

\(< =>x\ne0\)để biểu thức đc xđ