Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.
Do |x+2| > hoặc =0
|2y-10| > hoặc =0
=>|x+2|+|2y-10| > hoặc =0
=>___________+2012 > hoặc=0+2012=2012
Dấu "=" xảy ra khi:
\(\hept{\begin{cases}\left|x+2\right|=0\\\left|2y-10\right|=0\end{cases}}\)=>\(\hept{\begin{cases}x+2=0\\2y-10=0\end{cases}}=>\hept{\begin{cases}x=0-2=-2\\y=\left(0+10\right):2=5\end{cases}}\)
Vậy x=-2;y=5 <=> S=2012
\(\text{Bài giải}\)
\(\text{Ta có : }S=\left|x+2\right|+\left|2y-10\right|+2012\)
\(\text{Do }\left|x+2\right|\ge0\)
\(\left|2y-10\right|\ge0\)
\(\Rightarrow\text{ }\left|x+2\right|+\left|2y-10\right|\ge0\)
\(\Rightarrow\text{ }\left|x+2\right|+\left|2y-10\right|+2012\ge0+2012=2012\)
\(\text{Dấu "}=\text{" xảy ra khi :}\)
\(\hept{\begin{cases}\left|x+2\right|=0\\\left|2y-10\right|=0\end{cases}}\) \(\Rightarrow\hept{\begin{cases}x+2=0\\2y-10=0\end{cases}}\) \(\Rightarrow\hept{\begin{cases}x=0-2=-2\\y=\left(0+10\right)\text{ : }2=5\end{cases}}\)
\(\text{Thay }x=-2\text{ , }y=5\text{ ta có : }\)
\(S=\left|-2+2\right|+\left|2\cdot5-10\right|+2012\)
\(S=0+\left|10-10\right|+2012\)
\(S=0+0+2012\)
\(S=2012\)
\(\text{Vậy }GTNN\text{ của }S=2012\text{ khi }x=-2\text{ và }y=5\)
Có ( x+2011)^2 lon hon hoac bang 0
=> (x+ 2011)^2 -2012 lon hon hoac bang -2012
=>GTNN là -2012 hay x= -2011
Cho A=2012-1350:[999-(x-1)^2]. Tìm x thuộc N sao cho A đạt giá trị nhỏ nhất. Tìm giá trị nhỏ nhất đó
Bài 1.
a.Ta có: (x - 1)2 ≥ 0 với mọi x ∈ Z
=> (x - 1)2 + 12 ≥ 12 với mọi x ∈ Z
Dấu "=" xảy ra khi (x - 1)2 = 0
=> x - 1 = 0
=> x = 1
Vậy GTNN của A là 12 tại x = 1.
b. Có: |x + 3| ≥ 0 với mọi x ∈ Z
=> |x + 3| + 2020 ≥ 2020 với mọi x ∈ Z
Dấu "=" xảy ra khi |x + 3| = 0
=> x + 3 = 0
=> x = -3
Vậy GTNN của B là 2020 tại x = -3.
Bài 2.
Có: |3 - x| ≥ 0 với mọi x ∈ Z
=> 20 - |3 - x| ≥ 20 với mọi x ∈ Z
Dấu "=" xảy ra khi |3 - x| = 0
=> 3 - x = 0
=> x = 3
Vậy GTLN của Q là 20 tại x = 3.
1. A = ( x - 1 )2 + 12
\(\left(x-1\right)^2\ge0\forall x\Rightarrow\left(x-1\right)^2+12\ge12\forall x\)
Dấu = xảy ra <=> x - 1 = 0 => x = 1
Vậy AMin = 12 khi x = 1
B = | x + 3 | + 2020
\(\left|x+3\right|\ge0\forall x\Rightarrow\left|x+3\right|+2020\ge2020\forall x\)
Dấu = xảy ra <=> x + 3 = 0 => x = -3
Vậy BMin = 2020 khi x = -3
2. ( Bạn LOVE MYSELF sai dấu rồi nhé ... \(\le\)chứ )
Q = 20 - | 3 - x |
\(\left|3-x\right|\ge0\Rightarrow-\left|3-x\right|\le0\)
=> \(20-\left|3-x\right|\le20\forall x\)
Dấu = xảy ra <=> 3 - x = 0 => x = 3
Vậy QMax = 20 khi x = 3
Ta có :
Nếu x-3 > 0 hay x > 3 thì B > 0
Nếu x-8 < 0 hay x < 3 thì B < 0
Để A đạt giá trị nhỏ nhất thì x - 3 phải là số nguyên âm lớn nhất
Với x = 2 thì
Vậy B = -6 tại x = 2.
\(A=\left|x\left(x^2-1\right)\right|+\left|x^2-1\right|+2012\ge2012\)
Dấu "=" xảy ra khi \(x\left(x^2-1\right)=0;\text{ }x^2-1=0\Leftrightarrow x^2=1\Leftrightarrow x=1\text{ hoặc }-1\)
Vậy GTNN của A là 2012 tại x = 1; x = -1.