K
Khách

Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.

27 tháng 3 2020

9x^2 - 32 + k^2 - 2k.x = 0

Thay x = 2 vào, ta có: 

<=> 9.2^2 - 32 + k^2 - 2k.2 = 0

<=> 36 - 32 + k^2 - 4k = 0

<=> 4 + k^2 - 4k = 0

<=> (2 - k)^2 = 0

<=> 2 - k = 0

<=> k = 2

9 tháng 12 2019

Phương trình nhận x = -2 làm nghiệm nên ta có:

4 - 2 2  – 25 + k 2  + 4k(-2) = 0

⇔ 16 – 25 +  k 2 – 8k = 0

⇔  k 2  – 8k – 9 = 0

⇔  k 2  – 9k + k – 9 = 0

⇔ k(k – 9) + (k – 9) = 0

⇔ (k + 1)(k – 9) = 0

⇔ k + 1 = 0 hoặc k – 9 = 0

k + 1 = 0 ⇔ k = -1

k – 9 = 0 ⇔ k = 9

Vậy k = -1 hoặc k = 9 thì phương trình nhận x = -2 làm nghiệm.

14 tháng 4 2020

k=0 => \(9x^2-25=0\)

\(\Leftrightarrow x^2=\frac{25}{9}\Leftrightarrow x=\pm\frac{5}{3}\)

x=-1 => 9-25-k2=2k=0

=> k2-2k+16=0

=> không có giá trị k thỏa mãn

x=-1 

=>\(PT=9-25-k^2+2k=0=>k^2-2k+16=0\)

=> o có giá trị k thỏa mãn 

Chỉ vậy thôi à, còn chi tiết hơn ko, cái này tớ cũng giải được nhưng mà thắc mắc cái phần vì sao k2 - 2k + 16  lại ko có giá trị k thỏa mãn

29 tháng 11 2018

Thay x = 1 vào phương trình (3x + 2k – 5)(x – 3k + 1) = 0, ta có:

(3.1 + 2k – 5)(1 – 3k + 1) = 0

⇔ (2k – 2)(2 – 3k) = 0 ⇔ 2k – 2 = 0 hoặc 2 – 3k = 0

      2k – 2 = 0 ⇔ k = 1

      2 – 3k = 0 ⇔ k = 2/3

Vậy với k = 1 hoặc k = 2/3 thì phương trình đã cho có nghiệm x = 1

13 tháng 2 2020

a) k = 0 thì pt trở thành \(9x^2-25=0\Leftrightarrow x^2=\frac{25}{9}\)

\(\Leftrightarrow x=\pm\sqrt{\frac{5}{3}}\)

b) Thay x = -1 vào pt 

\(9-25-k^2+2k=0\Leftrightarrow k^2-2k=-16\)

Ta có \(\Delta=2^2-4.16< 0\)

Vậy ko có k để x=-1 là nghiệm