K
Khách

Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.

25 tháng 1 2022

P(x) + Q(x) = x^2 + 1 (1) 

P(x) - Q(x) = 2x (2) 

Lấy (1) + (2) suy ra : \(2P\left(x\right)=x^2+2x+1=\left(x+1\right)^2\Rightarrow P\left(x\right)=\dfrac{\left(x+1\right)^2}{2}\)

\(Q\left(x\right)=P\left(x\right)-2x=\dfrac{\left(x+1\right)^2-4x}{2}=\dfrac{\left(x-1\right)^2}{2}\)

25 tháng 1 2022

\(P\left(x\right)+Q\left(x\right)+P\left(x\right)-Q\left(x\right)=x^2+1+2x\\ \Rightarrow2P\left(x\right)=x^2+2x+1\\ \Rightarrow P\left(x\right)=\dfrac{x^2+2x+1}{2}\)

\(P\left(x\right)-Q\left(x\right)=2x\\ \Leftrightarrow\dfrac{x^2+2x+1}{2}-Q\left(x\right)=2x\\ \Leftrightarrow Q\left(x\right)=\dfrac{x^2+2x+1}{2}-2x\\ \Leftrightarrow Q\left(x\right)=\dfrac{x^2+2x+1-4x}{2}\\ \Leftrightarrow Q\left(x\right)=\dfrac{x^2-2x+1}{2}\)

a: TH1: x<1

A=1-x+2-x=3-2x

TH2; 1<=x<2

A=x-1+2-x=1

TH3: x>=2

A=x-1+x-2=2x-3

b: TH1: x<5/2

B=5-2x+3-x+x-2=-2x+6

TH2: 5/2<=x<3

B=2x-5+3-x+x-2=2x-4

TH3: x>=3

B=x-3+2x-5+x-2=4x-10

c: TH1: x<-3/2

C=-2x-3-(5-x)+2x

=-2x-3-5+x+2x

=x-8

TH2: -3/2<=x<5

C=2x+3-(5-x)+2x=4x+3-5+x=5x-2

TH3: x>=5

C=2x+3-(x-5)+2x=4x+3-x+5=3x+8

15 tháng 4 2018

a) \(2x^2-3x=0\)

\(\Leftrightarrow x\left(2x-3\right)=0\)

\(\Leftrightarrow\left[{}\begin{matrix}x=0\\2x-3=0\end{matrix}\right.\)

\(\Leftrightarrow\left[{}\begin{matrix}x=0\\2x=3\end{matrix}\right.\)

\(\Leftrightarrow\left[{}\begin{matrix}x=0\\x=\dfrac{3}{2}\end{matrix}\right.\)

b) \(x^3-2x=0\)

\(\Leftrightarrow x\left(x^2-2\right)=0\)

\(\Leftrightarrow\left[{}\begin{matrix}x=0\\x^2-2=0\end{matrix}\right.\)

\(\Leftrightarrow\left[{}\begin{matrix}x=0\\x^2=2\end{matrix}\right.\)

\(\Leftrightarrow\left[{}\begin{matrix}x=0\\x=\sqrt{2}\end{matrix}\right.\)

c) \(x^6+1=0\)

\(\Leftrightarrow x^6=-1\)

Ta có : \(x^6\ge0\) với mọi x

Mà : -1 < 0

=> Vô nghiệm

d) \(x^3+2x=0\)

\(\Leftrightarrow x\left(x^2+2\right)=0\)

\(\Leftrightarrow\left[{}\begin{matrix}x=0\\x^2+2=0\end{matrix}\right.\)

\(\Leftrightarrow\left[{}\begin{matrix}x=0\\x^2=-2\left(loại\right)\end{matrix}\right.\)

e) \(x^5+8x^2=0\)

\(\Leftrightarrow x^2\left(x^3+8\right)=0\)

\(\Leftrightarrow\left[{}\begin{matrix}x^2=0\\x^3+8=0\end{matrix}\right.\)

\(\Leftrightarrow\left[{}\begin{matrix}x=0\\x^3=-8\end{matrix}\right.\)

\(\Leftrightarrow\left[{}\begin{matrix}x=0\\x=-2\end{matrix}\right.\)

f) \(x^2\left(x^2-9\right)=0\)

\(\Leftrightarrow\left[{}\begin{matrix}x^2=0\\x^2-9=0\end{matrix}\right.\)

\(\Leftrightarrow\left[{}\begin{matrix}x=0\\x^2=9\end{matrix}\right.\)

\(\Leftrightarrow\left[{}\begin{matrix}x=0\\x=\pm3\end{matrix}\right.\)

g) \(\left(x+\dfrac{1}{2}\right)\left(x^2-\dfrac{4}{5}\right)=0\)

\(\Leftrightarrow\left[{}\begin{matrix}x+\dfrac{1}{2}=0\\x^2-\dfrac{4}{5}=0\end{matrix}\right.\)

\(\Leftrightarrow\left[{}\begin{matrix}x=\dfrac{-1}{2}\\x^2=\dfrac{4}{5}\end{matrix}\right.\)

\(\Leftrightarrow\left[{}\begin{matrix}x=\dfrac{-1}{2}\\x=\sqrt{\dfrac{4}{5}}\end{matrix}\right.\)

Dạng 1: 

a: =>x(x-3)=0

=>x=3 hoặc x=0

b: =>x(3x-4)=0

=>x=4/3 hoặc x=0

c: =>2x-1=0

=>x=1/2

d: =>2x(2x+3)=0

=>x=0 hoặc x=-3/2

e: =>x(2x+5)=0

=>x=-5/2 hoặc x=0

23 tháng 5 2018

a ) 

\(x^2-x+1=0\)

( a = 1 ; b= -1 ; c = 1 )

\(\Delta=b^2-4.ac\)

\(=\left(-1\right)^2-4.1.1\)

\(=1-4\)

\(=-3< 0\)

vì \(\Delta< 0\) nên phương trình vô nghiệm 

=> đa thức ko có nghiệm 

b ) đặc t = x (  \(t\ge0\) )

ta có : \(t^2+2t+1=0\)

( a = 1 ; b= 2 ; b' = 1 ; c =1 ) 

\(\Delta'=b'^2-ac\)

\(=1^2-1.1\)

\(=1-1=0\)

phương trình có nghiệp kép 

\(t_1=t_2=-\frac{b'}{a}=-\frac{1}{1}=-1\) ( loại )   

vì \(t_1=t_2=-1< 0\)

nên phương trình vô nghiệm 

Vay : đa thức ko có nghiệm 

24 tháng 5 2018

2/ Đặt \(f\left(x\right)=\left(2x^2-3x+5\right)+3x^2+3x-6\)

Ta có \(f\left(x\right)=\left(2x^2-3x+5\right)+3x^2+3x-6\)

=> \(f\left(x\right)=2x^2-3x+5+3x^2+3x-6\)

=> \(f\left(x\right)=5x^2-1\)

Khi \(f\left(x\right)=0\)

=> \(5x^2-1=0\)

=> \(5x^2=1\)

=> \(x^2=\frac{1}{5}\)

=> \(x=\sqrt{\frac{1}{5}}\)

Vậy f (x) có 1 nghiệm là \(x=\sqrt{\frac{1}{5}}\)

20 tháng 4 2018

\(M\left(x\right)=P\left(x\right)+Q\left(x\right)=2,5x^6-4+2,5x^5-6x^3+2x^2\)-5x+\(3x-2,5x^6-x^2+5-2,5x^5+6x^3\)

=\(\left(2,5x^6-2,5x^6\right)\)+\(\left(2,5x^5-2,5x^5\right)\)\(\left(-6x^3+6x^3\right)\)+\(\left(2x^2-x^2\right)\)+\(\left(-5x+3x\right)\)+(-4+5)

= \(x^2-2x+1\)

18 tháng 5 2018

Bài 1:

Thay x=1 vào đa thức F(x) ta được:

F(1) = 14+2.13-2.12-6.1+5 = 0

=> x=1 là nghiệm của đa thức F(x)

Tương tự ta thế -1; 2; -2 vào đa thức F(x)

Vậy x=1 là nghiệm của đa thức F(x)

19 tháng 3 2018

e, \(x^7-80x^6+80x^5-80x^4+80x^3-80x^2+80x+15\)

đặt 80=x+1 ta đc

\(x^7-\left(x+1\right)x^6+\left(x+1\right)x^5-\left(x+1\right)x^4+\left(x+1\right)x^3-\left(x+1\right)x^2+\left(x+1\right)x+15=x^7-x^7-x^6+x^6+x^5-x^5-x^4+x^4+x^3-x^3-x^2+x^2+x+15=x+15=79+15=94\)

10 tháng 2 2020

\(A,B,C,D\inℤ\)