Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.
a: =>x-1+11 chia hết cho x-1
=>\(x-1\in\left\{1;-1;11;-11\right\}\)
=>\(x\in\left\{2;0;12;-10\right\}\)
b: =>2n+6+9 chia hết cho n+3
=>\(n+3\in\left\{1;-1;3;-3;9;-9\right\}\)
=>\(n\in\left\{-2;-4;0;-6;6;-12\right\}\)
ong số học, bội số chung nhỏ nhất (hay còn gọi tắt là bội chung nhỏ nhất, viết tắt là BCNN, tiếng Anh: least common multiple hoặc lowest common multiple (LCM) hoặc smallest common multiple) của hai số nguyên a và b là số nguyên dương nhỏ nhất chia hết cho cả a và b.[1] Tức là nó có thể chia cho a và b mà không để lại số dư. Nếu a hoặc b là 0, thì không tồn tại số nguyên dương chia hết cho a và b, khi đó quy ước rằng LCM(a, b) là 0.
Định nghĩa trên đôi khi được tổng quát hoá cho hơn hai số nguyên dương: Bội chung nhỏ nhất của a1,..., an là số nguyên dương nhỏ nhất là bội số của a1,..., an.
Đáp án:
Giải thích các bước giải: a) x-5 ∈ Ư(6)={-1;1;-2;2;-3;3;-6;6} => x∈{4;6;3;7;2;8;-1;11} b) x-1∈ Ư(15)={-1;1;-3;3;-5;5;-15;15} => x∈ { 0;2;-2;4;-4;6;-14;16}
c) x+6 chia hết cho x+1 => x+1+5 chia hết cho x+1 => 5 chia hết cho x+1 (vì x+1 chia hết cho x+1) => x+1 ∈ Ư(5)={-1;1;-5;5} => x∈{ -2;0;-6;4}
cho và share nhé
15-x chia hết cho x-2
=>x-15 chia hết cho x-2
=>x-2-13 chia hết cho x-2
=>x-2 thuộc {1;-1;13;-13}
mà x>=0
nên x thuộc {3;1;15}
Ta có : \(15⋮x+1\)
\(\Rightarrow x+1\inƯ\left(15\right)=\left\{-15;-5;-3;-1;1;3;5;15\right\}\)
\(\Rightarrow x=\left\{-16;-6;-4;-2;0;2;4;14\right\}\)
Vì 15 : x + 1 => x + 1 thuộc Ư ( 15 ) = { 1 , 3 , 5 , 15 )
Hay x + 1 thuộc { 1 , 3 , 5 , 15 )
=> x thuộc { 0 , 2 , 4 , 14 }
Vậy x thuộc { 0 , 2 , 4 , 14 }