Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.
Gợi ý: Giả sử \(c\le d\)
Ta có: \(0< a+b\le18\)
\(\Leftrightarrow0< cd\le18\)
\(\Rightarrow c^2\le cd\le18\)
\(\Rightarrow0< c\le4\)
Thế c = 1 vào ta được
\(\hept{\begin{cases}a+b=d\\1+d=ab\end{cases}}\)
\(\Rightarrow1+a+b=ab\)
\(\Leftrightarrow\left(a-1\right)\left(b-1\right)=2\)
\(\Rightarrow\left(a-1,b-1\right)=\left(1,2;2,1\right)\)
\(\Rightarrow\left(a,b\right)=\left(2,3;3,2\right)\)
\(\Rightarrow\hept{\begin{cases}d=4\\d=2\end{cases}\left(l\right)}\)
Tương tự các trường hợp còn lại
Biến đổi đến 6c -5a = b tách b trừ c bằng 5 lần c trừ a suy ra b trừ c chia hết cho 5,
b >6,a <c lần lượt thay b bằng 7, 8, 9 tìm được c bằng 2, 3, 4 và a băng 1,2,3
Ta có :
\(\overline{a,b}.\overline{ab,a}=\overline{ab,ab}\)
\(\Leftrightarrow\)\(\left(\overline{a,b}.10\right)\left(\overline{ab,a}.10\right)=\overline{ab,ab}.100\)
\(\Leftrightarrow\)\(\overline{ab}.\overline{aba}=\overline{abab}\)
\(\Leftrightarrow\)\(\overline{ab}.\overline{aba}=\overline{ab}.\left(100+1\right)\)
\(\Leftrightarrow\)\(\overline{aba}=101\)
\(\Rightarrow\)\(a=1\)\(;\)\(b=0\)
Vậy \(a=1\) và \(b=0\)
Vì q=a2q=a2 nên ta có : q=1;4,9q=1;4,9
Với q=1q=1 ta có : abcd¯¯¯¯¯¯¯¯¯¯=dcba¯¯¯¯¯¯¯¯¯¯→a=b=c=dabcd¯=dcba¯→a=b=c=d
Mà abcd¯¯¯¯¯¯¯¯¯¯abcd¯ có dạng bình phương 1 số nguyên nên ta thử với các số có dạng xxxx¯¯¯¯¯¯¯¯¯¯¯=y2 (y∈Z)xxxx¯=y2 (y∈Z). Phương trình này vô nghiệm nên trường hợp này loại.
Với q=4q=4 ta có : abcd¯¯¯¯¯¯¯¯¯¯=4dcba¯¯¯¯¯¯¯¯¯¯abcd¯=4dcba¯
Có d chẵn, a≥9a≥9 nên d=2→a=8;9d=2→a=8;9
Tiếp tục thử với a=8; a=9a=8; a=9 bằng cách tách số hạng ta không tìm được số nào thỏa mãn.
Với q=9q=9 ta có a=9; d=1a=9; d=1 Tách tương tự không tìm được số nào thỏa mãn.
Nếu có chắc thử sai nhưng hướng làm là thế
do a chính phương nên a = 1,4 hoặc 9.Do đó \(\overline{ad}\) bằng 16 hya 49.
suy ra \(\overline{cd}\) bằng 16,36 hay 49.từ những điều này ta có a=1 hoặc a=4.vậy \(\overline{abcd}\) có dạng \(\overline{1b16},\overline{1b36},\overline{1b49},\overline{4b16},\overline{4b36},\overline{4b49}\) trong này chỉ có 1936 là số chính phương.
Vậy,...