Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.
d 10^n+72^n -1
=10^n -1+72n
=(10-1) [10^(n-1)+10^(n-2)+ .....................+10+1]+72n
=9[10^(n-1)+10^(n-2)+..........................-9n+81n
Bài 2:
a) Ta có: \(A=\dfrac{4}{n-1}+\dfrac{6}{n-1}-\dfrac{3}{n-1}\)
\(=\dfrac{4+6-3}{n-1}\)
\(=\dfrac{7}{n-1}\)
Để A là số tự nhiên thì \(7⋮n-1\)
\(\Leftrightarrow n-1\inƯ\left(7\right)\)
\(\Leftrightarrow n-1\in\left\{1;7\right\}\)
hay \(n\in\left\{2;8\right\}\)
Vậy: \(n\in\left\{2;8\right\}\)
ta có B=2n+9/n+2-3n+5n+1/n+2=4n+10/n+2 Để B là STN thì 4n+10⋮n+2 4n+8+2⋮n+2 4n+8⋮n+2 ⇒2⋮n+2 n+2∈Ư(2) Ư(2)={1;2} Vậy n=0
A)(0;0)(1;1)
B)Với n = 1 thì 1! = 1 = 1² là số chính phương .
Với n = 2 thì 1! + 2! = 3 không là số chính phương
Với n = 3 thì 1! + 2! + 3! = 1+1.2+1.2.3 = 9 = 3² là số chính phương
Với n ≥ 4 ta có 1! + 2! + 3! + 4! = 1+1.2+1.2.3+1.2.3.4 = 33 còn 5!; 6!; …; n! đều tận cùng bởi 0 do đó 1! + 2! + 3! + … + n! có tận cùng bởi chữ số 3 nên nó không phải là số chính phương .
Vậy có 2 số tự nhiên n thỏa mãn đề bài là n = 1; n = 3.
a)xy=x+y
=>xy-x-y=0
=>x(y-1)-(y-1)-1=0
=>x(y-1)-(y-1)=1
=>(y-1)(x-1)=1
=>y-1 và x-1 E Ư(1)={+-1}=>y=2 thì x=2 và y=0 thì x=0
b)Câu này khó quá nhưng ủng hộ nha
a) n + 1 là Ư(15) = {1 ; 3 ; 5 ; 15}
=> Có 4 trường hợp :
1) n + 1 = 1 => n = 0
2) n + 1 = 3 => n = 2
3) n + 1 = 5 => n =4
4) n + 1 = 15 => n = 14
b) n + 5 là Ư(12) = {1 ; 2 ; 3 ; 4 ; 6 ; 12}
=> Có 6 trường hợp
1) n + 5 = 1 => n = -4 ( loại )
2) n + 5 = 2 => n = -3 (loại)
3) n + 5 = 3 => n = -2 (loại )
4) n + 5 = 4 => n = -1 (loại )
5) n + 5 = 6 => n = 1 (nhận )
6) n + 5 = 12 => n = 7 ( nhận )
a)
+) x, y là số tự nhiên => x-5 , y+1 là số tự nhiên
+) 6=1.6=2.3
+) Em có thể kẻ bảng hoặc tách theo trường hợp:
th1: x-5=1, y+1=6 => x=6, y=5
Th2: x-5=6, y+1=1=>..
Th3: x-5=3, y+1=2=>...
Th4: x-5=2, y+1=3=> ...
b) Câu b làm tương tự nhé: 15=1.15=3.5. Cũng có 4 trường hợp:)