Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.
a) Có \(\left|x-3y\right|^5\ge0\);\(\left|y+4\right|\ge0\)
\(\rightarrow\left|x-3y\right|^5+\left|y+4\right|\ge0\)
mà \(\left|x-3y\right|^5+\left|y+4\right|=0\)
\(\rightarrow\left\{{}\begin{matrix}\left|x-3y\right|^5=0\\\left|y+4\right|=0\end{matrix}\right.\)
\(\rightarrow\left\{{}\begin{matrix}x=3y\\y=-4\end{matrix}\right.\)
\(\rightarrow\left\{{}\begin{matrix}x=-12\\y=-4\end{matrix}\right.\)
b) Tương tự câu a, ta có:
\(\left\{{}\begin{matrix}\left|x-y-5\right|=0\\\left(y-3\right)^4=0\end{matrix}\right.\)
\(\Leftrightarrow\left\{{}\begin{matrix}x=y+5\\y=3\end{matrix}\right.\)
\(\Leftrightarrow\left\{{}\begin{matrix}x=8\\y=3\end{matrix}\right.\)
c. Tương tự, ta có:
\(\left\{{}\begin{matrix}\left|x+3y-1\right|=0\\\left|y+2\right|=0\end{matrix}\right.\)
\(\Leftrightarrow\left\{{}\begin{matrix}x=1-3y\\y=-2\end{matrix}\right.\)
\(\Leftrightarrow\left\{{}\begin{matrix}x=7\\y=-2\end{matrix}\right.\)
a. \(\left|x-3y\right|^5\ge0,\left|y+4\right|\ge0\Rightarrow\left|x-3y\right|^5+\left|y+4\right|\ge0\) \(\Rightarrow VT\ge VP\)
Dấu bằng xảy ra \(\Leftrightarrow\left\{{}\begin{matrix}\left|x-3y\right|^5=0\\\left|y+4\right|=0\end{matrix}\right.\) \(\Leftrightarrow\left\{{}\begin{matrix}x=3y\\y=-4\end{matrix}\right.\) \(\Leftrightarrow\left\{{}\begin{matrix}x=-12\\y=-4\end{matrix}\right.\) Vậy...
b. \(\left|x-y-5\right|\ge0,\left(y-3\right)^4\ge0\Rightarrow\left|x-y-5\right|+\left(y-3\right)^4\ge0\) \(\Rightarrow VT\ge VP\)
Dấu bằng xảy ra \(\Leftrightarrow\left\{{}\begin{matrix}\left|x-y-5\right|=0\\\left(y-3\right)^4=0\end{matrix}\right.\) \(\Leftrightarrow\left\{{}\begin{matrix}x=y+5\\y=3\end{matrix}\right.\Leftrightarrow\left\{{}\begin{matrix}x=8\\y=3\end{matrix}\right.\) Vậy ...
c. \(\left|x+3y-1\right|\ge0,3\cdot\left|y+2\right|\ge0\Rightarrow\left|x+3y-1\right|+3\left|y+2\right|\ge0\) \(\Rightarrow VT\ge VP\) Dấu bằng xảy ra \(\Leftrightarrow\left\{{}\begin{matrix}\left|x+3y-1\right|=0\\3\left|y+2\right|=0\end{matrix}\right.\) \(\Leftrightarrow\left\{{}\begin{matrix}x=1-3y\\y=-2\end{matrix}\right.\Leftrightarrow\left\{{}\begin{matrix}x=1-\left(-2\right)\cdot3=7\\y=-2\end{matrix}\right.\) Vậy...
=>x(2y+1)-3y-1,5=2,5
=>(y+0,5)(2x-3)=2,5
=>(2y+1)(2x-3)=5
=>\(\left(2x-3;2y+1\right)\in\left\{\left(1;5\right);\left(5;1\right);\left(-1;-5\right);\left(-5;-1\right)\right\}\)
=>\(\left(x,y\right)\in\left\{\left(2;2\right);\left(4;0\right);\left(1;-3\right);\left(-1;-1\right)\right\}\)
\(2xy+x-3y=4\)
\(\Leftrightarrow4xy+2x-6y=8\)
\(\Leftrightarrow4xy+2x-6y-3=5\)
\(\Leftrightarrow2x\left(2y+1\right)-3\left(2y+1\right)=5\)
\(\Leftrightarrow\left(2x-3\right)\left(2y+1\right)=5\)
2x-3 | -5 | -1 | 1 | 5 |
2y+1 | -1 | -5 | 5 | 1 |
x | -1 | 1 | 2 | 4 |
y | -1 | -3 | 2 | 0 |
Vậy pt có các cặp nghiệm nguyên \(\left(x;y\right)=\left(-1;-1\right);\left(1;-3\right);\left(2;2\right);\left(4;0\right)\)
Bài này dễ mà!
Có: \(xy+2x=27-3y\)
\(x\left(y+2\right)=33-3\left(y+2\right)\)
\(x\left(y+2\right)+3\left(y+2\right)=33\)
\(\left(x+3\right)\left(y+2\right)=33\)
Đến phần này chắc bạn tự làm đc rồi nhỉ
3y2=12-\(|x-2|\)suy ra 3y2 + /x-2/ =12
Vì /x-2/ \(\ge0;\forall x\); y2\(\ge0;\forall y\)
mà x, y nguyên
TH1: y2=4 và /x-2/ = 0
suy ra y thuộc {2; -2} và x=2
TH2:
y2=1 và /x-2/ = 9
suy ra y thuộc {1; -1} và x thuộc {11; -7}
TH3:
y2=0 và /x-2/ = 12
suy ra y =0 và x thuộc {14; -10}
Tự kết luận nhé