K
Khách

Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.

25 tháng 2 2020

Ta có: \(xy+3x-y-3=0\)

\(\Rightarrow\)xy + 3x - y = 6

=>x(y+3) - y = 6

=>x(y+3) - y - 3 = 3

=>x(y+3) - (y+3) = 3

=> (y+3)(x-1) =3

Vì x, y là các số nguyên nên y+3;x-1 là các số nguyên

Ta có bảng sau:

y+3-3-113
y-6-4-20
x-1-1-331
x0-242
 
25 tháng 2 2020

                                                          Bài giải

xy + 3x - y - 3 = 3

xy + 3x - y = 6

x ( y + 3 ) - ( y + 3 ) + 3 = 6

( x - 1 ) ( y + 3 ) = 3

Ta có bảng :

x - 1 - 3 - 1 1    3
y + 3 - 1 - 3 3   1
x - 2   0 2   4
y - 4 - 6 0 - 2

Vậy ( x , y ) = ( - 2 ; - 4 ) ; ( 0 ; - 6 ) ; ( 2 ; 0 ) ; ( 4 ; - 2 )

NV
31 tháng 1 2021

1.

\(2\left|x\right|+3\left|y\right|=13\Rightarrow\left|x\right|=\dfrac{13-3\left|y\right|}{2}\)

\(\Rightarrow\left\{{}\begin{matrix}\left|y\right|\le\dfrac{13}{3}\\\left|y\right|\text{ là số lẻ}\end{matrix}\right.\)  \(\Rightarrow\left|y\right|=\left\{1;3\right\}\)

- Với \(\left|y\right|=1\Rightarrow\left|x\right|=5\Rightarrow\) có 4 cặp

- Với \(\left|y\right|=3\Rightarrow\left|x\right|=2\) có 4 cặp

Tổng cộng có 8 cặp số nguyên thỏa mãn

2.

\(x\left(y+3\right)=7y+21+1\)

\(\Leftrightarrow x\left(y+3\right)-7\left(y+3\right)=1\)

\(\Leftrightarrow\left(x-7\right)\left(y+3\right)=1\)

\(\Rightarrow\left(x;y\right)=\left(6;-4\right);\left(8;-2\right)\) có 2 cặp

9 tháng 4 2021

Ta có: 3x+4y-xy=15

=> (3x-xy)+4y=15

=>x(3-y)+4y=15

=>x(3-y)+4y-12=15-12

=>-x(y-3)+4(y-3)=3

=>(4-x)(y-3)=3

mà 3=1.3=(-1).(-3)

nên (x,y) thuộc (3;6);(5;0)

vậy x=3,y=6 và x=5, y=0

19 tháng 1 2017

3x+4y+xy=1

ó x(3-y) + 4y = 1

ó x(3-y) -12 + 4y = 1 - 12

ó x(3-y) - 4(3-y) = -13

ó (x - 4 )( 3 - y ) = -13

Ta có bảng:

x-4

1

13

-1

-13

3-y

13

1

-13

-1

x

5

17

-3

-9

y

-10

2

16

4

Vậy bn tự kết luận gt x,y

19 tháng 1 2017

lỗi chữ, chỗ từ ó kia là dấu <=> nha

26 tháng 1 2022

xy+3x-2y=11

=>x(y+3)=11+2y

=>x=\(\dfrac{2y+11}{y+3}\). Vì x là số nguyên nên:

2y+11 ⋮ y+3

=>2(y+3)+5 ⋮ y+3

=>5 ⋮ y+3

=>y+3∈Ư(5)

=>y+3∈{1;-1;5;-5}

=>y∈{-2;-4;2;-8}

=>x∈{7;-3;3;1).

- Vậy các cặp số (x;y) là (7;-2) , (-3;-4) , (3;2) ; (1;-8)

15 tháng 1 2019

\(xy+4x+y=3\)

\(\Leftrightarrow x\left(y+4\right)+\left(y+4\right)=7\)

\(\Leftrightarrow\left(x+1\right)\left(y+4\right)=7\)

Vì x ; y nguyên nên x + 1 nguyên , y + 4 nguyên

Ta có bảng

x + 1               -7                   -1                     1                   7                     
y + 4-1-771
x-8-206
y-5-113-3

Vậy ,.............

16 tháng 1 2019

\(xy+4x+y=3\)

\(\Rightarrow x\left(y+4\right)+\left(y+4\right)=3+4\)

\(\Rightarrow\left(x+1\right)\left(y+4\right)=7\)

\(\Rightarrow\left(x+1\right);\left(y+4\right)\inƯ\left(7\right)=\left\{\pm1;\pm7\right\}\)

Ta có các trường hợp sau 

\(TH1:\hept{\begin{cases}x+1=1\\y+4=7\end{cases}\Leftrightarrow\hept{\begin{cases}x=0\\y=3\end{cases}}}\)            \(TH2:\hept{\begin{cases}x+1=-1\\y+4=-7\end{cases}\Leftrightarrow\hept{\begin{cases}x=-2\\y=-11\end{cases}}}\)

\(TH3:\hept{\begin{cases}x+1=7\\y+4=1\end{cases}\Leftrightarrow\hept{\begin{cases}x=6\\y=-3\end{cases}}}\)      \(TH4:\hept{\begin{cases}x+1=-7\\y+4=-1\end{cases}\Leftrightarrow\hept{\begin{cases}x=-8\\y=-5\end{cases}}}\)

Vậy\(\left(x;y\right)\in\left\{\left(0;3\right);\left(-2;-11\right);\left(6;-3\right);\left(-8;-5\right)\right\}\)