Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.
Mình chỉ biết là theo định lí Fermat lớn thì pt \(x^n+y^n=z^n\) ko có nghiệm nguyên khác 0 khi \(n\ge3\) chứng đừng nói tới số nguyên tố.
Do \(p^4+q^4=r^4\)mà p, q, r là số nguyên tố nên r > q, r > p
\(\Rightarrow\)Chắc chắn r là số lẻ.
\(\Rightarrow\)p hoặc q là số chẵn.
Giả sử p chẵn \(\Rightarrow\)p = 2.
Ta có:\(16+q^4=r^4\)
\(\Leftrightarrow r^4-q^4=16\)
\(\Leftrightarrow\left(r^2-q^2\right)\left(r^2+q^2\right)=16\)
\(\Rightarrow r^2-q^2,r^2+q^2\inƯ\left(16\right)\)
Ta lại có: \(r^2-q^2< r^2+q^2\)
\(\Rightarrow\hept{\begin{cases}r^2-q^2=1\\r^2+q^2=16\end{cases}\Leftrightarrow\hept{\begin{cases}r=\frac{\sqrt{34}}{2}\\q=\frac{\sqrt{30}}{2}\end{cases}}}\)(Không thỏa mãn)
Vậy không có giá trị nào của p, q, r thỏa mãn yêu cầu đề bài.
Bạn tham khảo nhé!!!!
a3+b3=3ab−1
⇔a3+b3−3ab+1=0⇔a3+b3−3ab+1=0
⇔(a+b)3−3ab(a+b)−3ab+1=0
⇔(a+b)3+1−3ab(a+b+1)=0
⇔(a+b+1)[(a+b)2−(a+b)+1]−3ab(a+b+1)=0
⇔(a+b+1)(a2+b2+1−ab−a−b)=0
Vì a,b>0a,b>0 nên a+b+1≠0
Do đó:
a2+b2+1−a−b−ab=0
⇔\(\frac{\left(a-b\right)^2+\left(a-1\right)^2+\left(b-1\right)^2}{2}\)=0
⇔a=b=1
Do đó: a2018+b2019=1+1=2
Ta có đpcm.
Theo đề suy ra: \(y=\frac{x^2-24}{x+5}=\frac{x^2-25+1}{x+5}=\frac{\left(x+5\right)\left(x-5\right)+1}{x+5}=x-5+\frac{1}{x+5}\)
Để \(x,y\inℤ\)thì \(\frac{1}{x+5}\inℤ\Leftrightarrow1⋮\left(x+5\right)\Leftrightarrow x+5=\pm1\Leftrightarrow\orbr{\begin{cases}x=-4\Rightarrow y=-8\\x=-6\Rightarrow y=-12\end{cases}}\)
Vậy pt có 2 nghiệm là (-4;-8) và (-6;-12)
Có p là số nguyên tố,p lẻ
+)Xét p=3 suy ra 134=2q(17q+24) suy ra q(17q+24)=67
Mà q lớn hơn hoặc = 2 nên vô lí
+)Xét p>3.p nguyên tố nên p ko chia hết cho 3
th1: p chia 3 dư 1.Đặt p=3k+1 nên VT chia hết cho 3 nên VP chia hết cho 3, Từ đó suy ra q chia hết cho 3,mà q nguyên tố nên q=3.Thay vào tìm ra p
th2 : p chia 3 dư 2. Đặt p=3k+2 nên VT chia 3 dư 2. VT=VP nên 2q(17q+24) chia 3 dư 2
Từ đó có q(17q+24) chia 3 dư 1 nên 17q^2 +24q chia 3 dư 1
Mà 24q chia hết cho 3 nên 17q^2 chia 3 dư 1(loại)
trường hợp 2 hình như ko đúng