Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.
Ta có: x(x + y) + y(x + y) = \(\frac{1}{48}+\frac{1}{24}\)
=> (x + y)2 = \(\frac{1}{16}\)
=> x + y = ±\(\frac{1}{4}\)
+) Xét x + y = \(\frac{1}{4}\)
x(x + y) = \(\frac{1}{48}\) => x.\(\frac{1}{4}\) = \(\frac{1}{48}\) => x = \(\frac{1}{12}\)
y(x + y) = \(\frac{1}{24}\) => y.\(\frac{1}{4}\) = \(\frac{1}{24}\) => y = \(\frac{1}{6}\)
+) Xét x + y = \(\frac{-1}{4}\)
x(x + y) = \(\frac{1}{48}\) => x.\(\frac{-1}{4}\) = \(\frac{1}{48}\) => x = \(\frac{-1}{12}\)
y(x + y) = \(\frac{1}{24}\) => y.\(\frac{-1}{4}\) = \(\frac{1}{24}\) => y = \(\frac{-1}{6}\)
Vậy...
Ta có:
\(x.\left(x+y\right)+y.\left(x+y\right)=\frac{1}{48}+\frac{1}{24}\)
=> \(\left(x+y\right)^2=\frac{1}{16}\)
=> \(\left[\begin{array}{nghiempt}x+y=\frac{1}{4}\\x+y=-\frac{1}{4}\end{array}\right.\)
+ Với \(x+y=\frac{1}{4}\) => \(x=\frac{1}{48}:\frac{1}{4}=\frac{1}{12};y=\frac{1}{24}:\frac{1}{4}=\frac{1}{6}\)
+ Với \(x+y=-\frac{1}{4}\) => \(x=\frac{1}{48}:\frac{-1}{4}=-\frac{1}{12};y=\frac{1}{24}:\frac{-1}{4}=-\frac{1}{6}\)
Vậy các cặp giá trị (x;y) thỏa mãn đề bài là: \(\left(\frac{1}{12};\frac{1}{6}\right);\left(-\frac{1}{12};-\frac{1}{6}\right)\)
\(^{\text{(x+1+y+1+x+y)}^2}\)=2
\(^{\text{(x+1+y+1+x+y)}^2}\) =\(^{2^2}\)
x+1+y+1+x+y=2
(x+x)+(y+y)+(1+1)=2
x.2+y.2+2=2
2.(x+y+1)=2
x+y+1=2:2
x+y+1=1
x+y=1-1
x+y=0
=>x;y=0
2011||x2−y|−8|+y2−1=12011||x2−y|−8|+y2−1=1
⇔||x2−y|−8|+y2−1=0⇔||x2−y|−8|+y2−1=0
⇔||x2−y|−8|+y2=1⇔||x2−y|−8|+y2=1
Do x;y∈Z⇒||x2−y|−8|∈N;y2∈Nx;y∈Z⇒||x2−y|−8|∈N;y2∈N
Do y∈Z⇒y2y∈Z⇒y2 là số chính phương
Mà 1=0+11=0+1 nên ta có 22 trường hợp xảy ra
-Trường hợp 1: {||x2−y|−8|=1(1)y2=0(2){||x2−y|−8|=1(1)y2=0(2)
(2)⇔y=0(2)⇔y=0
Thay yy vào (1)(1) ta được:
||x2−0|−8|=1⇔||x2|−8|=1||x2−0|−8|=1⇔||x2|−8|=1
⇔|x2−8|=1⇔[x2−8=1x2−8=−1⇔|x2−8|=1⇔[x2−8=1x2−8=−1
⇔[x2=9x2=7⇔[x=±3x=±√7⇔[x2=9x2=7⇔[x=±3x=±7
Mà x∈Z⇒x=±3x∈Z⇒x=±3
-Trường hợp 2:
{||x2−y|−8|=0(3)y2=1(4)⇔{|x2−y|−8=0(3)y=±1{||x2−y|−8|=0(3)y2=1(4)⇔{|x2−y|−8=0(3)y=±1
+Nếu y=1,y=1, thay vào (3)(3) ta được:
|x2−1|−8=0⇔|x2−1|=8|x2−1|−8=0⇔|x2−1|=8
⇔[x2−1=8x2−1=−8⇔[x2=9x2=−7(loại)⇔[x2−1=8x2−1=−8⇔[x2=9x2=−7(loại)
⇔x2=9⇔x=±3⇔x2=9⇔x=±3 (thỏa mãn)
+Nếu y=−1,y=−1, thay vào (3)(3) ta được:
| x2+1 | = 0⇔x2+1=8⇔x2=7|x2+1|−8=0⇔x2+1=8⇔x2=7
⇔x=±√7⇔x=±7 (không thỏa mãn)