Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.
Ta có: \(\left(a+b+c\right)^3=\left[\left(a+b\right)+c\right]^3=\left(a+b\right)^3+c^3+3\left(a+b\right)c\left(a+b+c\right)\)
\(=a^3+b^3+3ab\left(a+b\right)+c^3+3\left(a+b\right)c\left(a+b+c\right)\)
\(=a^3+b^3+c^3+3\left(a+b\right)\left[ab+c\left(a+b+c\right)\right]\)
\(=a^3+b^3+c^3+3\left(a+b\right)\left(ab+ac+bc+c^2\right)\)
\(=a^3+b^3+c^3+3\left(a+b\right)\left(b+c\right)\left(c+a\right)\)
Vì \(\left(a+b+c\right)^3\) \(=a^3+b^3+c^3+3\left(a+b\right)\left(b+c\right)\left(c+a\right)\)nên \(\left(a+b+c\right)^3-\left(a^3+b^3+c^3\right)=3\left(a+b\right)\left(b+c\right)\left(c+a\right)\Leftrightarrow\left(a+b+c\right)^3-a^3-b^3-c^3=3\left(a+b\right)\left(b+c\right)\left(c+a\right)\left(đpcm\right)\)