K
Khách

Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.

22 tháng 8 2017

\(\frac{a}{2}=\frac{b}{3}=\frac{c}{4}\)

\(\Leftrightarrow\frac{a}{2}=\frac{2b}{6}=\frac{3c}{12}=\frac{a+2b-3c}{2+6-12}=\frac{-20}{-4}=5\)

\(\Rightarrow a=5;b=15;c=20\)

Theo bài ra , ta có:

\(\frac{a}{2}=\frac{b}{3}=\frac{c}{4}\)\(a+2b-3c=-20\)

Áp dụng tính chất của dãy tỉ số bằng nhau vào biểu thức ,ta có:

\(\frac{a}{2}=\frac{b}{3}=\frac{c}{4}\)\(\Rightarrow\frac{a}{2}=\frac{2b}{6}=\frac{3c}{12}=\frac{a+2b-3c}{2+6-12}=\frac{-20}{-4}=5\)

Từ trên \(\Rightarrow\frac{a}{2}=\frac{b}{3}=\frac{c}{4}=5\)

\(\Rightarrow\frac{a}{2}=5\Rightarrow a=10\)

\(\Rightarrow\frac{b}{3}=5\Rightarrow b=15\)

\(\Rightarrow\frac{c}{4}=5\Rightarrow c=20\)

Vậy \(a=10;b=15;c=20\)

14 tháng 11 2018

Gọi 3 phân số đó là \(\frac{a}{x},\frac{b}{y},\frac{c}{z}\)

Ta có các tử tỉ lệ với 3;4;5=>a:b:c=3:4:5=>\(\frac{a}{3}=\frac{b}{4}=\frac{c}{5}\)

Đặt \(\frac{a}{3}=\frac{b}{4}=\frac{c}{5}=k\)

=>\(\hept{\begin{cases}a=3k\\b=4k\\c=5k\end{cases}}\)

Lại có các mẫu tỉ lệ với 5,1,2=>x:y:z=5:1:2=>\(\frac{x}{5}=\frac{y}{1}=\frac{z}{2}\)

Đặt \(\frac{x}{5}=\frac{y}{1}=\frac{z}{2}=h\)

=> \(\hept{\begin{cases}x=5h\\y=h\\z=2h\end{cases}}\)

Ta có tổng 3 phân số là \(\frac{213}{70}\)

=> \(\frac{a}{x}+\frac{b}{y}+\frac{c}{z}=\frac{213}{70}\)

(=) \(\frac{3k}{5h}+\frac{4k}{h}+\frac{5k}{2h}=\frac{213}{70}\)

(=) \(\frac{k}{h}.\left(\frac{3}{5}+4+\frac{5}{2}\right)=\frac{213}{70}\)

(=) \(\frac{k}{h}=\frac{3}{7}\)

=> \(\hept{\begin{cases}\frac{a}{x}=\frac{9}{35}\\\frac{b}{y}=\frac{12}{7}\\\frac{c}{z}=\frac{15}{14}\end{cases}}\)

14 tháng 11 2018

bài 3

Ta có \(\frac{3a-2b}{5}=\frac{2c-5a}{3}=\frac{5b-3c}{2}\)

\(\frac{15a-10b}{25}=\frac{6c-15a}{9}=\frac{10b-6a}{4}\)

=\(\frac{15a-10b+6c-15a+10b-6a}{25+9+4}=0\)

=> \(\hept{\begin{cases}3a-2b=0\\2c-5a=0\\5b-3c=0\end{cases}\left(=\right)\hept{\begin{cases}3a=2b\\2c=5a\\5b=3c\end{cases}\left(=\right)\hept{\begin{cases}\frac{a}{2}=\frac{b}{3}\\\frac{c}{5}=\frac{a}{2}\\\frac{b}{3}=\frac{c}{5}\end{cases}}}}\)

=> \(\frac{a}{2}=\frac{b}{3}=\frac{c}{5}=\frac{a+b+c}{2+3+5}=\frac{-50}{10}=-5\)

=> \(\hept{\begin{cases}a=-10\\b=-15\\c=-25\end{cases}}\)

BACDH

     +   Xét ▲BCD cân tại D có DH là đường trung tuyến => DH chính là đường cao của ▲BCD

=>  DH \(\perp\)CD  

     +    Áp dụng định lý Pitago vào ▲vuông DHC có : 

                 DC2 = DH2 + CH2   (1)

    +   Xét ▲vuông ABC có :  AH là đường trung tuyến ứng vs cạnh huyền.

=>   AH = \(\frac{BC}{2}\)=CH (2)

     Từ (1) và (2) có :

                DC2 = DH2 + CH2 = DH2 + AH2   ( đpcm )

BACDH

  +   Xét ▲BCD cân tại D có DH là đường trung tuyến => DH chính là đường cao của ▲BCD

=>  DH \(\perp\)CD  

     +    Áp dụng định lý Pitago vào ▲vuông DHC có : 

                 DC2 = DH2 + CH2   (1)

    +   Xét ▲vuông ABC có :  AH là đường trung tuyến ứng vs cạnh huyền.

=>   AH = \(\frac{BC}{2}\)=CH (2)

     Từ (1) và (2) có :

                DC2 = DH2 + CH2 = DH2 + AH2   ( đpcm )

26 tháng 10 2017

cho mk hỏi a^2-b^2+2^2 bằng bao nhiêu vậy

26 tháng 10 2017

bằng 180 nha bạn

8 tháng 12 2015

=>a/2=b:3/2=c:4/3

Áp dụng tc dãy tỉ số bằng nhau, ta được:

a/2=b:3/2=c:4/3=(a-b)/(2-3/2)=15/1/2=30

nên a=30*2=60

b=30*3/2=45

c=30*4/3=40

25 tháng 6 2018

a) \(2A=2+2^2+...+2^{2018}\)

\(A=1+2+2^2+..+2^{2017}\)

=> \(A=2^{2018}-1< 2^{2018}\)

=> A < B

b) \(3B=1+\frac{1}{3}+...+\frac{1}{3^{98}}\)

    \(B=\frac{1}{3}+\frac{1}{3^2}+...+\frac{1}{3^{99}}\)

=> \(2B=3B-B=1-\frac{1}{3^{99}}\)

=> \(B=\frac{1}{2}-\frac{1}{3^{99}\cdot2}< \frac{1}{2}\)( đpcm )