\(\left(ab\right)^3\)

">
K
Khách

Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.

27 tháng 7 2016

bài này ko khó tự nghĩ đi

 

27 tháng 7 2016

hinh nhu sai sai

chi co abce thoi chu

27 tháng 7 2016

abcd=1000

 

27 tháng 7 2016

bài này cũng sai đề luôn phải là tìm abcd chứ

2 tháng 11 2016

a ) \(M=a^3+b^3+ab\) biết \(a+b=1\)

\(M=\left(a+b\right)\left(a^2-ab+b^2\right)+ab\)

\(M=a^2-ab+b^2+ab\)

\(M=a^2+b^2\)

Ta có : \(\left(a-b\right)^2\ge0\)

\(\Rightarrow a^2+b^2\ge2ab\)

\(\Rightarrow2\left(a^2+b^2\right)\ge a^2+2ab+b^2=\left(a+b\right)^2=1\)

\(\Rightarrow a^2+b^2\ge\frac{1}{2}\)

Vậy \(Min_M=\frac{1}{2}\Leftrightarrow a=b=\frac{1}{2}\).

b ) \(N=\left(x^2+x\right)\left(x^2+x-4\right)=\left[\left(x^2+x-2\right)+2\right]\left[\left(x^2+x-2\right)-2\right]=\left(x^2+x-2\right)^2-4\ge-4\)

Vậy \(Min_N=-4\)\(\Leftrightarrow x^2+x-2=0\Leftrightarrow\left(x-1\right)\left(x+2\right)=0\Leftrightarrow\left[\begin{array}{nghiempt}x=1\\x=-2\end{array}\right.\).

5 tháng 8 2019

Làm đầy đủ hộ mình, mai nộp rùi

5 tháng 8 2019

a) \(5^{3x+1}=25^{x+2}\)

\(\Leftrightarrow5^{3x+1}=\left(5^2\right)^{x+2}\)

\(\Leftrightarrow5^{3x+1}=5^{2x+4}\)

\(\Leftrightarrow3x+1=2x+4\)

\(\Leftrightarrow3x-2x=4-1\)

\(\Leftrightarrow x=3\)

23 tháng 7 2019

1) \(\left|x\right|< 4\Leftrightarrow-4< x< 4\)

2) \(\left|x+21\right|>7\Leftrightarrow\orbr{\begin{cases}x+21>7\\x+21< -7\end{cases}}\Leftrightarrow\orbr{\begin{cases}x>-14\\x< -28\end{cases}}\)

3) \(\left|x-1\right|< 3\Leftrightarrow-3< x-1< 3\Leftrightarrow-2< x< 4\)

4) \(\left|x+1\right|>2\Leftrightarrow\orbr{\begin{cases}x+1>2\\x+1< -2\end{cases}}\Leftrightarrow\orbr{\begin{cases}x>1\\x< -3\end{cases}}\)

23 tháng 7 2019

\(\left|x+\frac{1}{2}\right|+\left|3-y\right|=0\)

Vì \(\hept{\begin{cases}\left|x+\frac{1}{2}\right|\ge0\\\left|3-y\right|\ge0\end{cases}}\Rightarrow\)\(\left|x+\frac{1}{2}\right|+\left|3-y\right|\ge0\)

Dấu "="\(\Leftrightarrow\hept{\begin{cases}\left|x+\frac{1}{2}\right|=0\\\left|3-y\right|=0\end{cases}}\Leftrightarrow\hept{\begin{cases}x=\frac{-1}{2}\\y=3\end{cases}}\)

19 tháng 3 2017

Đặt \(\frac{3\left|x\right|+5}{3}=\frac{3\left|y\right|-1}{5}=\frac{3-z}{7}=k\)

\(\Rightarrow\left|x\right|=\frac{3k-5}{3}\Rightarrow2\left|x\right|=\frac{6k-10}{3}\)

\(\Rightarrow\left|y\right|=\frac{5k+1}{3}\Rightarrow7\left|y\right|=\frac{35k+7}{3}\)

\(\Rightarrow z=3-7k\Rightarrow3z=9-21k\)

Vì \(2\left|x\right|+7\left|y\right|+3z=-14\)\(\Rightarrow\frac{6k-10}{3}+\frac{35k+7}{3}+\left(9-21k\right)=-14\)

\(\Rightarrow\frac{\left(6k-10\right)+\left(35k+7\right)+\left(27-63k\right)}{3}=-14\)

\(\Rightarrow\frac{-22k+24}{3}=-14\)

\(\Rightarrow-22k+24=-42\)

\(\Rightarrow k=\frac{-42-24}{22}=3\)

\(\Rightarrow\left|x\right|=\frac{3.3-5}{3}=\frac{4}{3}\Rightarrow x=-\frac{4}{3};\frac{4}{3}\)

\(\Rightarrow\left|y\right|=\frac{5.3+1}{3}=\frac{16}{3}\Rightarrow y=-\frac{16}{3};\frac{16}{3}\)

\(\Rightarrow z=3-7.3=-18\)

13 tháng 2 2018

a) Ta có \(|5\left(2x+3\right)\ge0\)

               \(|2\left(2x+3\right)|\ge0\)

               \(|2x+3|\ge0\)

\(\Rightarrow|5\left(2x+3\right)|+|\left(2x+3\right)|+|2x+3|\ge0\)

\(\Rightarrow5\left(2x+3\right)+2\left(2x+3\right)+2x+3=16\)

\(\Rightarrow10x+15+4x+6+2x+3=16\)

\(\Rightarrow\left(10x+4x+2x\right)+\left(15+6+3\right)=16\)

\(\Rightarrow16x+24=16\)

\(\Rightarrow24=16x-16\)

\(\Rightarrow24=x\)

Vậy x=24

4 tháng 11 2016

a ) \(A=\frac{ax^2\left(a-x\right)-a^2x\left(x-a\right)}{3a^2-3x^2}=\frac{ax\left(a-x\right)\left(a+x\right)}{3\left(a-x\right)\left(a+x\right)}=\frac{ax}{3}\)

Thay \(a=\frac{1}{2};x=-3\), ta có :

\(A=\frac{\frac{1}{2}.-3}{3}=-\frac{1}{2}\)

b ) \(B=\frac{\left(ab+bc+cd+da\right)abcd}{\left(c+d\right)\left(a+b\right)+\left(b-c\right)\left(a-d\right)}=\frac{\left[\left(ab+ad\right)+\left(bc+cd\right)\right]abcd}{ca+cb+da+db+ba-bd-ca+cd}\)

\(=\frac{\left[a\left(b+d\right)+c\left(b+d\right)\right]abcd}{ba+da+cb+cd}=\frac{\left(b+d\right)\left(a+c\right)abcd}{\left(b+d\right)\left(a+c\right)}=abcd\)

Thay \(a=-3;b=-4;c=2;d=3\), ta có :

\(B=\left(-3\right).\left(-4\right).2.3=72\)