K
Khách

Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.

26 tháng 10 2017

Ta có:

\(\left\{{}\begin{matrix}ax^3+bx^2+c=\left(x-2\right)\left(ax^2+\left(b+2a\right)x+2\left(b+2a\right)\right)+c+4\left(b+2a\right)\\ax^3+bx^2+c=\left(x^2-1\right)\left(ax+b\right)+ax+b+c\end{matrix}\right.\)

Từ đây ta có:

\(\left\{{}\begin{matrix}8a+4b+c=0\\a=2\\b+c=5\end{matrix}\right.\)

\(\Leftrightarrow\left\{{}\begin{matrix}a=2\\b=-7\\c=12\end{matrix}\right.\)

29 tháng 10 2017

Vì ax3 + bx2 + c chia hết cho x - 2 => ax3 + bx2 + c = P(x).(x - 2) (1)

Vì ax3 + bx2 + c chia cho x2 - 1 thì dư 2x + 5 => ax3 + bx2 + c = Q(x).(x2 - 1) + 2x + 5 = Q(x).(x - 1).(x + 1) + 2x + 5 (2)

+) Với x = 2 thì từ (1) ta có: 8a + 4b + c = 0

+) Với x = 1 thì từ (2) ta có a + b + c = 7

+) Với x = -1 thì từ (2) ta có -a + b - c = 1

Như vậy ta có hệ:

\(\left\{{}\begin{matrix}8a+4b+c=0\\a+b+c=7\\-a+b-c=1\end{matrix}\right.\)

Tự giải nốt

24 tháng 11 2022

v

11 tháng 10 2018

Em tham khảo bài có cách làm tương tự ở link dưới đây:

Câu hỏi của Đặng Tuấn Anh - Toán lớp 9 - Học toán với OnlineMath

7 tháng 2 2021

- Để hai đa thức trên chia cho nhau hết thì :\(\left\{{}\begin{matrix}7a-4=0\\b-2\left(1-3a\right)=0\end{matrix}\right.\)

\(\Leftrightarrow\left\{{}\begin{matrix}7a=4\\6a+b=2\end{matrix}\right.\)

\(\Leftrightarrow\left\{{}\begin{matrix}a=\dfrac{4}{7}\\b=-\dfrac{10}{7}\end{matrix}\right.\)

Vậy ...

7 tháng 2 2021

cảm ơn ạ

 

25 tháng 10 2017

gọi thương của phép chia ax^3 +bx^2+c cho x-2; x^2-1 là G(x);H(x)

ta có:

ax^3 +bx^2 +c=(x-2)G(x)

với x=2 suy ra 8a+4b+c=0

mặt khác: 

ax^3 +bx^2 +c=(x^2-1)H(x)+2^x+5

với x=1 suy ra a+b+c=7

với a=-1 suy ra -a+b+c=11/2

suy ra a=3/4;b=-1/12:c=19/3

11 tháng 10 2018

Em tham khảo bài có cách làm tương tự ở link dưới đây:

Câu hỏi của Đặng Tuấn Anh - Toán lớp 9 - Học toán với OnlineMath