K
Khách

Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.

B(x) là đa thức không

=>a-4=0 và 3b-a+1=0

=>a=4 và 3b-4+1=0

=>a=4 và 3b-3=0

=>b=1 và a=4

25 tháng 2 2023

đa thức B(x)=(a-4)x-3b-a+1 là đa thức không khi và chỉ khi a-4=0 và 3b-a+1=0

=>a=4 và b=1

26 tháng 2 2023

a=4; b=1

25 tháng 2 2023

sửa lại đề bài

A(x)=(a-2b)x^2-3bx+a-1

Theo đề, ta có: A(x) chia hết cho x-4 và A(1)=0

=>a-2b-3b+a-1=0

=>2a-5b-1=0

=>5b=2a-1

=>b=0,4a-0,2

A(x)=(a-2b)x^2-3bx+a-1

=(a-0,8a+0,4)x^2-3x(0,4a-0,2)+a-1

=(0,2a+0,4)x^2-(1,2a-0,6)x+a-1

A(x) chia hết cho x-4

=>(0,2a+0,4)x^2-x(0,8a+1,6)+x(0,8a+1,6-1,2a+0,6)+a-1 chia hết cho x-4

=>x(-0,4a+2,2)+a-1 chia hết cho x-4

=>x(-0,4a+2,2)-4(-0,4a+2,2)+4(-0,4a+2,2)+a-1 chia hết cho x-4

=>-1,6a+8,8+a-1=0

=>-0,6a+7,8=0

=>a=13

=>b=0,4*13-0,2=5,2-0,2=5

1 tháng 10 2017

Câu a :

Theo giả thiết bài ra ta có hệ phương trình :

\(\left\{{}\begin{matrix}P\left(1\right)=1^4+a.1^3+b.1^2+c.1+d=1\\P\left(2\right)=2^4+a.2^3+b.2^2+c.2+d=4\\P\left(3\right)=3^4+a.3^3+b.3^2+c.3+d=7\\P\left(4\right)=4^4+a.4^3+b.4^2+c.4+d=10\end{matrix}\right.\)

\(\Rightarrow\left\{{}\begin{matrix}a+b+c+d=0\\8a+4b+2c+d=-12\\27a+9b+3c+d=-74\\64a+16b+4c+d=-246\end{matrix}\right.\)

\(\Rightarrow\left\{{}\begin{matrix}-7a-3b-c=12\\-26a-8b-2c=74\\-63a-15b-3c=246\end{matrix}\right.\)

\(\Rightarrow\left\{{}\begin{matrix}a=-10\\b=35\\c=-47\\d=0-\left(-10+35-47\right)=22\end{matrix}\right.\)

Vậy \(\left\{{}\begin{matrix}a=-10\\b=35\\c=-47\\d=22\end{matrix}\right.\)

1 tháng 10 2017

Câu b ạ

20 tháng 1 2016

thay x=-5/4 vào=>f(-5/4)=0
chia x-2 dư 39 =>f(2)=39
đc hệ pt bậc nhất 2 ẩn => tìm đc a và b

17 tháng 10 2017

Casio hả bạn