K
Khách

Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.

15 tháng 8 2018

Để cho \(a+b+2\sqrt{ab+c^2}\)là xô nguyên tô thì trươc hêt \(\sqrt{ab+c^2}\)phải là xô nguyên đã.

\(\Rightarrow ab+c^2=d^2\)

\(\Leftrightarrow ab=\left(c+d\right)\left(c-d\right)\)

\(\Rightarrow\)a, b phải cùng tinh chẵn lẻ.

Ta thây rằng a, b cùng tinh chẵn lẻ thì

\(a+b+2\sqrt{ab+c^2}\) chia hêt cho 2

Lại co: \(a+b+2\sqrt{ab+c^2}>2\)

Vậy \(a+b+2\sqrt{ab+c^2}\) không thể là xô nguyên tô được.

15 tháng 8 2018

Bài trên chỗ \(\left(c+d\right)\left(c-d\right)\)xửa lại thành \(\left(c+d\right)\left(d-c\right)\)lỡ tay bâm nhầm.

AH
Akai Haruma
Giáo viên
21 tháng 10 2023

Số dương? Hay số nguyên dương hả bạn?

22 tháng 1 2020

Huhu ai giúp mk vs ạ mình xin hậu tạ và cảm ơn😭

7 tháng 7 2016

a) Mình sửa lại đề bài của bạn chút : Cần chứng minh \(\sqrt{c\left(a-c\right)}+\sqrt{c\left(b-c\right)}-\sqrt{ab}\le0\)

Áp dụng bất đẳng thức Bunhiacopxki , ta có : \(\left[\sqrt{c\left(a-c\right)}+\sqrt{c\left(b-c\right)}\right]^2=\left(\sqrt{c}.\sqrt{a-c}+\sqrt{b-c}.\sqrt{c}\right)^2\le\left(c+b-c\right)\left(a-c+c\right)\)

\(\Rightarrow\left[\sqrt{c\left(a-c\right)}+\sqrt{c\left(b-c\right)}\right]^2\le ab\Rightarrow\sqrt{c\left(a-c\right)}+\sqrt{c\left(b-c\right)}\le\sqrt{ab}\)

\(\Leftrightarrow\sqrt{c\left(a-c\right)}+\sqrt{c\left(b-c\right)}-\sqrt{ab}\le0\)(đpcm)

b) Ta có : \(\sqrt{1+b}+\sqrt{1+c}=2\sqrt{1+a}\)

Áp dụng bất đẳng thức Bunhiacopxki , ta có : \(\left(2\sqrt{1+a}\right)^2=\left(1.\sqrt{1+b}+1.\sqrt{1+c}\right)^2\le\left(1^2+1^2\right)\left(1+b+1+c\right)\)

\(\Leftrightarrow4\left(1+a\right)\le2\left(b+c+2\right)\Leftrightarrow4+4a\le2\left(b+c\right)+4\Leftrightarrow b+c\ge2a\)(đpcm)

5 tháng 7 2018

\(\left(\sqrt{a}+\sqrt{b}\right)^2=a+b+2\sqrt{ab}\)

áp dụng bất đẳng thức cô si ta có:

\(\left(a+b\right)+2\sqrt{ab}>=2\sqrt{\left(a+b\right)2\sqrt{ab}}\)

11 tháng 6 2021

a) Có: `1+tan^2a=1/(cos^2a)`

`<=> 1+(3/5)^2=1/(cos^2a)`

`=> cosa=\sqrt10/4`

`=> sina = \sqrt(1-cos^2a) = \sqrt6/4`

b) Có: `sin^2a + cos^2a=1`

`<=> sin^2a + (1/4)^2=1`

`=> sina=\sqrt15/4`

`=> tana = (sina)/(cosa) = \sqrt15`

 

11 tháng 6 2021

Má ơi,tính sai:

a)\(\left[{}\begin{matrix}cos\alpha=\dfrac{5\sqrt{34}}{34}\\cos\alpha=\dfrac{-5\sqrt{34}}{34}\end{matrix}\right.\)\(\Rightarrow\left[{}\begin{matrix}sin\alpha=cos\alpha.tan\alpha=\dfrac{3\sqrt{34}}{34}\\sin\alpha=cos\alpha.tan\alpha=\dfrac{-3\sqrt{34}}{34}\end{matrix}\right.\)

b)\(\left[{}\begin{matrix}sin\alpha=\dfrac{\sqrt{15}}{4}\\sin\alpha=\dfrac{-\sqrt{15}}{4}\end{matrix}\right.\)\(\left[{}\begin{matrix}tan\alpha=\dfrac{sin\alpha}{cos\alpha}=\sqrt{15}\\tatn\alpha=-\sqrt{15}\end{matrix}\right.\)

17 tháng 7 2018

B A C H

\(\frac{AB}{AC}=\frac{5}{6}\)\(\Rightarrow\)\(\frac{AB}{5}=\frac{AC}{6}=x\)  \(\left(x>0\right)\)

\(\Rightarrow\)\(AB=5x;\)\(AC=6x\)

Áp dụng hệ thức lượng ta có:

\(\frac{1}{AH^2}=\frac{1}{AB^2}+\frac{1}{AC^2}\)

\(\Leftrightarrow\)\(\frac{1}{9}=\frac{1}{25x^2}+\frac{1}{36x^2}\)

\(\Leftrightarrow\)\(\frac{61}{900x^2}=\frac{1}{9}\)

\(\Rightarrow\)\(900x^2=549\)

\(\Rightarrow\)\(x=\sqrt{\frac{549}{900}}=\frac{\sqrt{61}}{10}\)

\(\Rightarrow\)\(AB=\frac{\sqrt{61}}{2}\);     \(AC=\frac{3\sqrt{61}}{5}\)

Áp dụng Pytago ta có:

    \(AB^2+AC^2=BC^2\)

\(\Leftrightarrow\)   \(BC=61x^2\)

\(\Leftrightarrow\)\(BC=x\sqrt{61}\)

\(\Leftrightarrow\)\(BC=\frac{\sqrt{61}}{10}.\sqrt{61}=6,1\)

p/s: bạn tham khảo nhé, do số không đẹp nên có lẽ mk tính toán sai 1 số chỗ, bạn bỏ qua và ktra nhé, sai đâu ib mk